Annexure - III

Faculty of Science Ordinance, Curriculum & Syllabus Master of Science (Mathematics) (2019-20)

Shree Guru Gobind Singh Tricentenary University, Gurugram (Haryana)-122505, India

MASTER OF SCIENCE [M.Sc.]

COURSE ORDINANCE

1. PREAMBLE

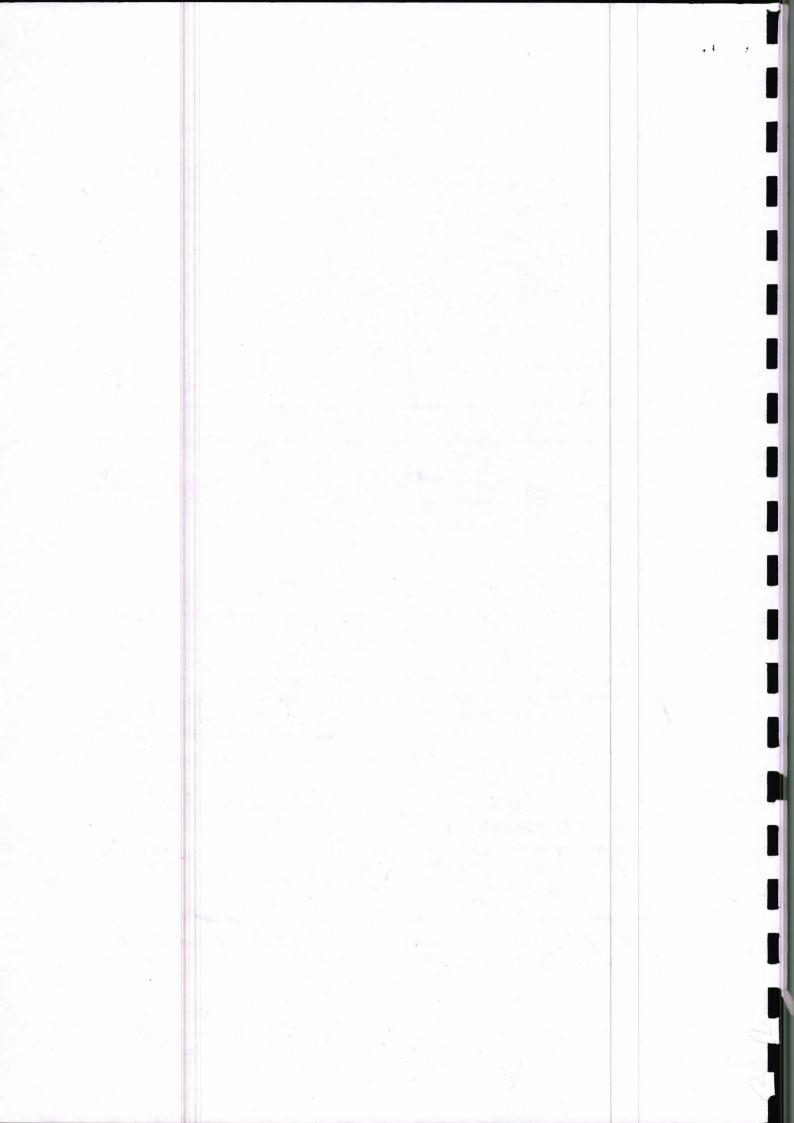
..........

The University Grants Commission (UGC) has initiated several measures to bring equity, efficiency and excellence in the Higher Education System of country. The important measures taken to enhance academic standards and quality in higher education include innovation and improvements in curriculum, teaching-learning process, examination and evaluation systems, besides governance and other matters.

The UGC has formulated various regulations and guidelines from time to time to improve the higher education system and maintain minimum standards and quality across the Higher Educational Institutions (HEIs) in India. The academic reforms recommended by the UGC in the recent past have led to overall improvement in the higher education system.

Faculty of Science. Shree Guru Gobind Singh Tercentenary University, Gurugram with the aim to enhance academic standards in quality of higher education has adopted the UGC guide lines as such in all PG courses.

The grading system is considered to be better than the conventional marks system and in order to facilitate student mobility across institutions with in India and across countries the community grade point average (CGPA) has been introduced in all the PG courses. The guidelines as follows,


CHOICE BASED CREDIT SYSTEM (CBCS):

The CBCS provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill based courses. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Therefore, it is necessary to introduce uniform grading system in the entire higher education in India. This will benefit the students to move across institutions within India to begin with and across countries. The uniform grading system will also enable potential employers in assessing the performance of the candidates. In order to bring uniformity in evaluation system and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations, the UGC has formulated the guidelines to be followed.

Outline of Choice Based Credit System:

- Core Course: A course, which should compulsorily be studied by a candidate as a core a. requirement is termed as a Core course.
- b. Elective Course: Generally a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/ subject of study or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the candidate's proficiency/skill is called an Elective Course.
 - i. Discipline Specific Elective (DSE) Course: Elective courses may be offered by the main discipline/subject of study is referred to as Discipline Specific Elective. The

m S. S. Le New Helling

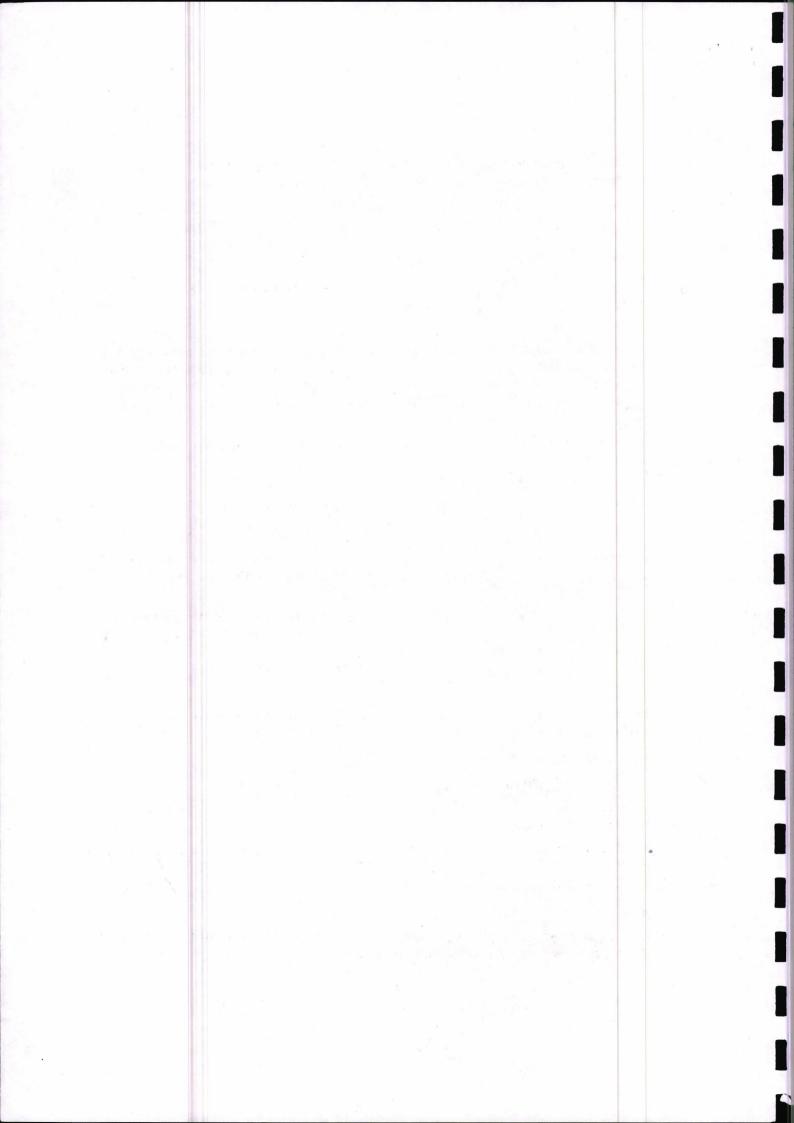
University/Institute may also offer discipline related Elective courses of interdisciplinary nature (to be offered by main discipline/subject of study).

- ii. **Dissertation/Project:** An elective course designed to acquire special/advanced knowledge, such as supplement study/support study to a project work, and a candidate studies such a course on his own with an advisory support by a teacher/faculty member is called dissertation/project.
- c. Skill Enhancement Course: The course based upon the content that leads to Knowledge enhancement.

2. GOALS:

- i. Employment prospects for post graduates are very good. The scientific knowledge and mathematical and analytic skills acquired help to place across a wide range of industries including aerospace, pharmaceutical, dyes, fabrics, electronics, semiconductors, petroleum, communications, computing, education, commerce, civil services and many more.
- ii. The course will build a rich knowledge base to provide a foundation for the continued study of science.
- iii. The theoretical and experimental skills necessary to analyze and solve a range of advances problems, providing an excellent foundation for leadership.
- iv. Post-graduation leads to abundance of research opportunities.

3. OBJECTIVES


The postgraduate training should enable the student to:

- i. Practice efficiently various investigative procedures backed by scientific knowledge including basic sciences and skills.
- ii. Get expertise in his/her field of interest
- iii. Play the assigned role in the implementation of required practical skills.
- iv. Be a motivated 'teacher' defined as one keen to share knowledge and skills with a colleague or a junior or any learner continue to evince keen interest in continuing education irrespective of whether he/she is in a teaching institution or is practicing and use appropriate learning resources.
- v. Exercise empathy and a caring attitude and maintain professional integrity, honesty and high ethical standards.
- vi. The student is expected to know his subject in depth; however, emphasis should be on the analytical techniques. Knowledge of recent advances and basic sciences as applicable to his/her specialty should get high priority.
- vii. Competence in skills commensurate with the specialty (actual hands-on training) must be ensured.

4. Duration and Nomenclature of the Course:

The duration of M.Sc (Physics /Chemistry /Mathematics /Forensic Science/Environmental Science course shall be of two academic years consisting of four (4) semesters (15-17 weeks) under Choice Based Credit System(CBCS). On successful completion of all the four semesters, the student will be awarded M.Sc.Degree in the concerned course. The student

Rend Jollin &

shall complete the course within a maximum period of 4 years from the date of admission to the first semester, failing which he/she will be disqualified from the course.

5. Admission to the Course:

i. Eligibility for Admission:

For admission to the 1st Semester of M.Sc. (Physics) course, the candidate must have passed B.Sc. (Pass) with Physics as one of the subjects/B.Sc. (Hons.) Physicswith 50% marks (45% marks in case of SC/ST candidates of Haryana only) in aggregate or equivalent grade from any university recognized by UGC

For admission to the 1st Semester of M.Sc. (Chemistry) course, the candidate must have passed B.Sc. (Pass) with Chemistry as one of the subjects/B.Sc. (Hons.) Chemistry with 50% marks (45% marks in case of SC/ST candidates of Haryana only) in aggregate or equivalent grade from any university recognized by UGC.

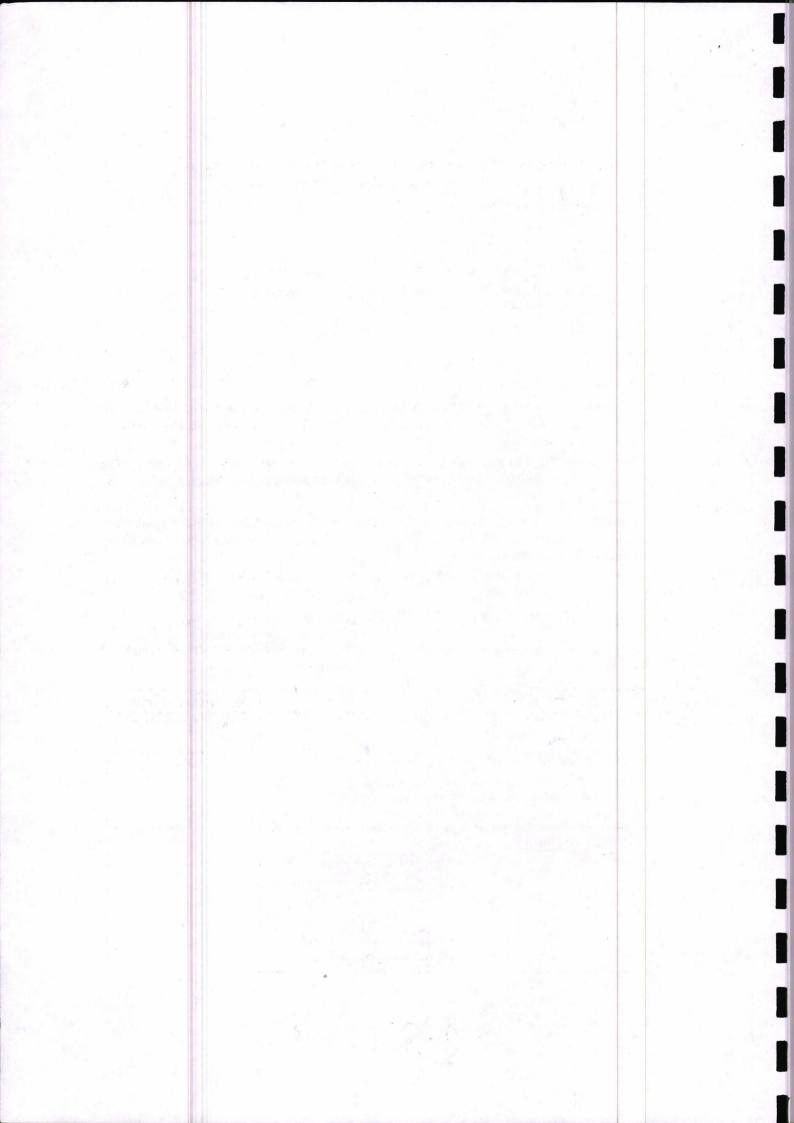
For admission to the 1st Semester of M.Sc. (Mathematics) course, the candidate must have passed B.Sc. (Pass) with Mathematics as one of the subjects/B.Sc. (Hons.) Mathematics /B.A (Pass) with Mathematics/ as one of the subjects/ B.A (Hons.) Mathematics with 50% marks (45% marks in case of SC/ST candidates of Harvana only) in aggregate or equivalent grade from any university recognized by UGC.

For admission to the 1st Semester of M.Sc. (Forensic Science) course, the candidate must be graduate with Physics, Chemistry & Mathematics, Physics, Chemistry & Biology OR Agricultural sciences OR BCA OR B.Pharm. OR B.Sc.(Nursing) OR Engineering sciences OR B.Sc.(Forensic Sciences) OR Medical sciences with 50% marks (45% marks in case of SC/ST candidates of Haryana only) in aggregate or equivalent grade from any university recognized by UGC.

For admission to the 1st Semester of M.Sc. (Environmental Science) course, the candidate must have passed B.Sc(Non Medical/ Environmental Sciences/Life Sciences/Bio Sciences/ Agriculture) with 50% marks (45% marks in case of SC/ST candidates of Haryana only) in aggregate or equivalent grade from any university recognized by UGC.

ii. Schedule of admission and payment of fees:

The admission schedule, along with last date for the submission of admission forms and payment of fees, shall be fixed by the Vice-Chancellor from time to time.


6. Mode of Selection of Candidates for Admission:

The admissions will be made as per the following criteria:

Sr.No. Criteria Condition 1 On the Basis of the Merit of the qualifying If the no. of applicants is up to 3 times of the intake Examination. 2 On the Basis of the Merit of the Entrance If the no. of applicants is more Examination. than 3 times of the intake

7. Syllabus:

The syllabus is based on Choice Based Credit System (CBCS) and is recommended by Board of W C.S. ww 716/119 & Studies and approved by Academic Council from time to time.

8. Scheme of Examination, distribution of marks, credit system and Syllabus:

The Scheme of examination, distribution of marks in various papers along with the credit system and the syllabus of the course shall be as approved by Board of Studies/Academic Council from time to time.

9. Medium of Instruction and Examination:

The medium of the instruction and the examination shall be English only.

10. Attendance Requirements/Eligibility to Appear in Examination:

The student should fulfill the following criteria to be eligible for appearing in the End Term Semester Examinations:


- i. He/she should bear a good moral character.
- ii. He/she should be on the rolls of the Dept./Faculty of the University during the semester.
- iii. He/she should have 75% of the attendance during the respective semester. Twenty five per cent (25%) of attendance relaxation shall account for illness and contingencies of serious and unavoidable nature.
- iv. The Dean of the Faculty of his own or on the recommendation of the HOD shall have the power to give relaxation upto 5% on genuine grounds over the minimum 75% attendance.
- v. Further, the Vice Chancellor of his own or on the recommendation of the Dean shall have the power to give further relaxation upto 5% on genuine grounds over the above mentioned minimum attendance.
- vi. He/she should not be a defaulter in payment of any dues of the SGT University and no disciplinary action is pending against the student.

11. Exemption from Attendance / Shortage of attendance to be condoned:

The shortage of lecture to the maximum limit as under can be condoned by the competent authority:

Sr. No	Exemptable No. of Lecture	Ground of Exemption	Competent Authority
1	All periods of the days of blood donation	Voluntarily blood donation to the Blood Bank.	Dean of the Faculty
2	All periods of the day of Examination	of For appearing in the -c supplementary examinations(Theory /Practical/Viva-voce)	
3 10 days attendance during a semester		Acce during a For participation in University or Inter- Collegiate Sports Tournaments/ Youth Festivals, NCC/NSS Camps/University Educational Excursions/ Mountaineering Courses	

C. Je une Hellis

4	15 days attendance during a	For participation in Inter-	-do-
	semester	University Sports	
		Tournaments/ Youth	
		Festivals	

Provided:

- i. that he/she has obtained prior approval of the Dean, Faculty of Science;
- ii. that credit may be given only for the days on which lectures were delivered or tutorials or practical work done during the period of participation in the aforesaid events.

12. Attendance Shortage Warning:

Attendance shortage warning will be displayed on the Faculty's Notice Board and University Website by 10th day of every month.

13. Detained students

A student, who does not fulfill the criteria prescribed in Clauses10-11, will not be eligible for appearing in the End Term Semester Examination in that particular paper and will be deemed as Detained in that paper. Such student will repeat the course/paper alongwith the regular students of the subsequent batchto fulfill the prescribed conditions to appear in the "End Term" examination of the course/paper.

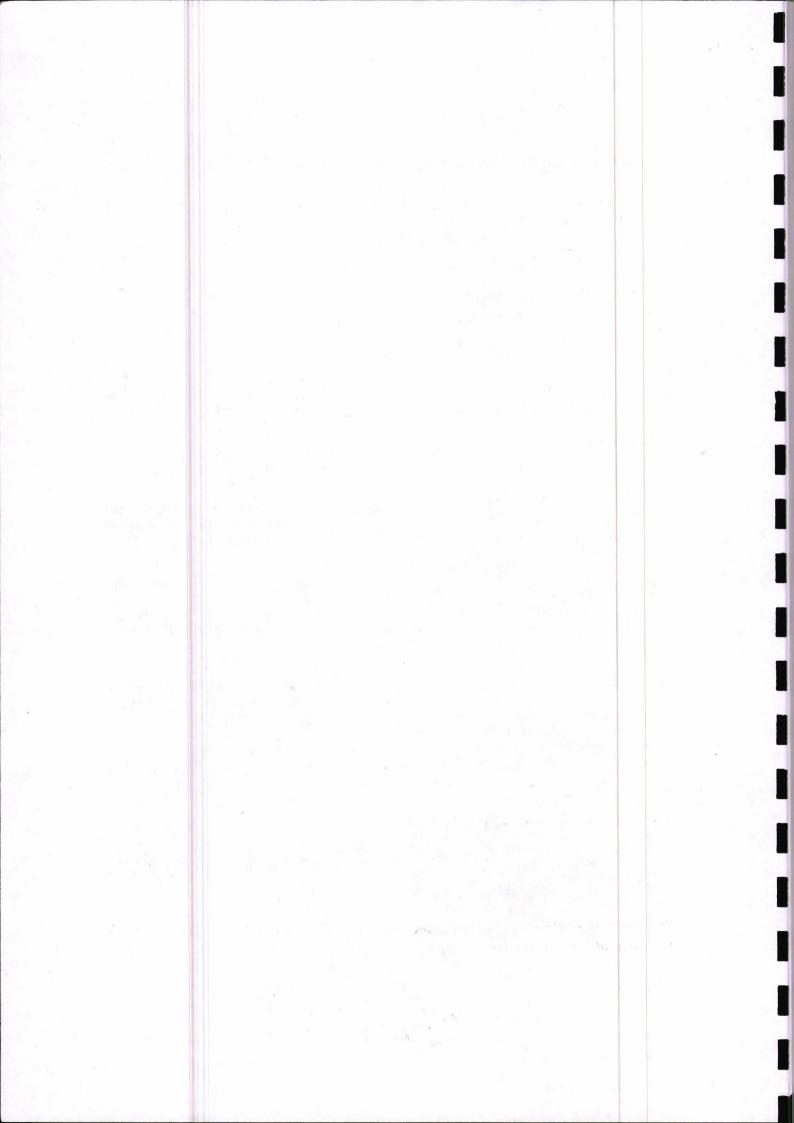
14. Submission of Examination Forms and Payment of Examination Fee:

The Dean, Faculty of Science shall submit the examination admission forms of thosestudents who satisfy the eligibility criteria to appear in the examinations to the Controller of Examinations as per schedule of examination circulated by him from time to time.

15. University Examinations:

i. End Term Semester Examinations:

The examination for the 1^{st} and 3^{rd} semesters (Odd Semesters) shall ordinarily be held in the month of December and of the 2^{nd} and 4^{th} semesters (Even Semesters) in the month of May/June. The examination dates are fixed by the controller of examination with the approval of Vice Chancellor.


ii. Fail/ Reappear candidates:

Fail / re-appear candidate of the odd semesters $(1^{st}\& 3^{rd})$ will take re-appear exams as an ex-student in the subsequent exams of the odd semesters $(1^{st}\&3^{rd})$. Similarly, for the even semesters $(2^{nd}\&4^{th})$, he/she will take re-appear exams. in the subsequent exams of the even semesters $(2^{nd}\&4^{th})$. However, a candidate appearing in the 4th semester examination (Regular) may appear simultaneously in his/her re-appear paper(s) of lower semesters.

16. Improvement Examination:

The student may be permitted to improve his/her result subject to the following conditions:

and Floring & 5 Sik

- i. The student will be permitted to appear in improvement examination as an ex-student with regular batches.
- ii. The student will be permitted to improve his/her CGPA in one or all papers in which he/she has obtained CGPA less than 'First Division' in aggregate.
- iii. Only one chance per paper will be given. The chance must be availed within a year of initially passing of every semester examination.
- iv. The candidate will be required to apply and allowed to appear only for theory examinations.
- v. If the status/nature of the student's result does not improve by five (05) or more per cent, his/her improvement result will be declared "PRS" (Previous Result Stands).
- vi. The candidate shall be allowed to appear in the improvement examination(s) along with regular candidates as and when the course is offered. No separate examination will be held for improvement of result. In case of change of syllabi, the student shall have to appear for improvement in accordance with the changed syllabi of the concerned course applicable to the regular students of that exam.

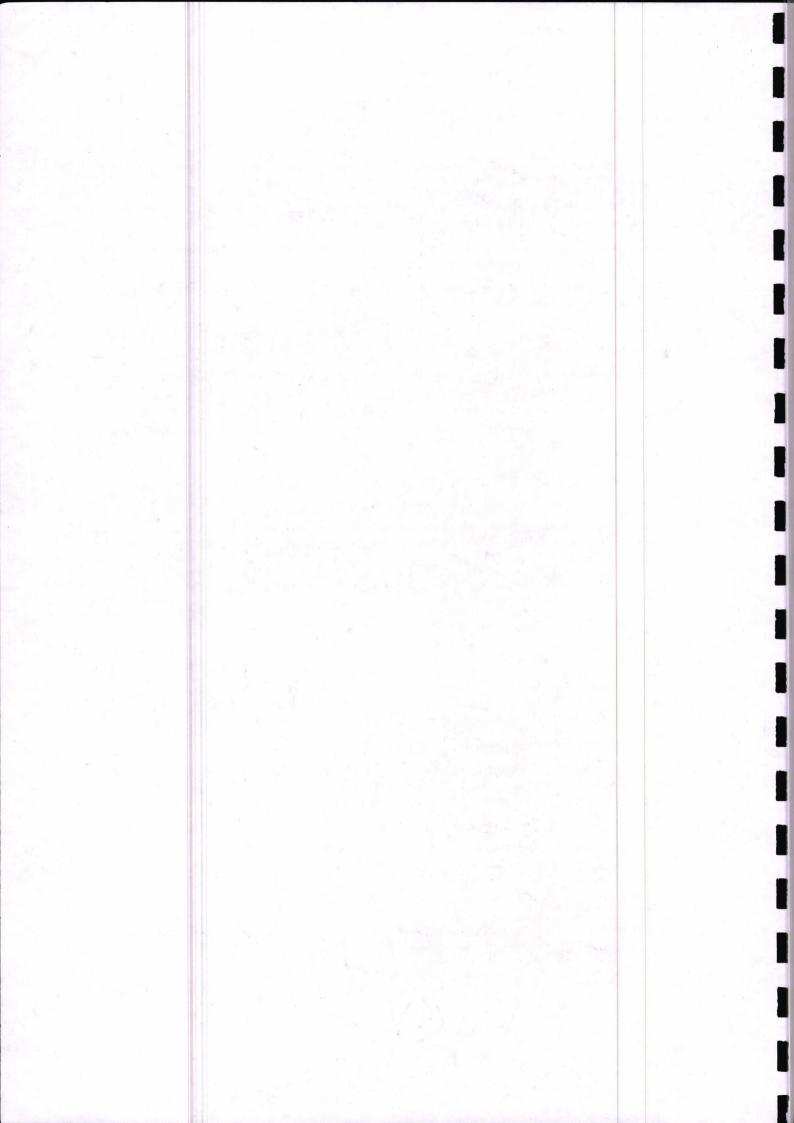
17. Setting of Question Papers:

- i. The Head of the Department/Dean of the Faculty shall supply the panel of internal and external examiners duly approved by the Board of Studies to the Controller of Examinations. The paper(s) will be set by the examiner(s) nominated by the Vice-Chancellor from the panel of examiners.
- ii. An examiner shall be allowed to set not more than two papers in a semester examination.
- iii. The examiner(s) will set the question papers as per criteria laid down in the Scheme of Examinations as approved by the Board of Studies/Academic Council of the University.

18. Evaluation Process – Theory and Practical: **Evaluation of Answer Books:**

The answer books may be evaluated either by the paper setter or any other internal or external examiner to be nominated by the Controller of Examiners with the approval of the Vice-Chancellor from the panel of examiners approved by the Board of Studies.

Re-evaluation of Answer Books:


Re-evaluation/ rechecking of any paper is allowed. The students can apply for Re-evaluation/ Re-checking of any paper to the Controller of Examinations through the HoD/Dean of the Faculty within 10 days of the declaration of result by paying prescribed fee.

Practical Examinations - Appointment of Examiner:

a. The practical examinations shall be conducted by a Board of two Examiners consisting of one internal and one external examiner to be nominated by the Vice-Chancellor from the panel of examiners.

Marks Distribution:

The distribution of marks in examination of the practical paper will be as per the criteria given below: An C.X Lever Joins &

- a. Experimental performance = 60% marks
- b. Viva-Voce = 30% marks
- c. Laboratory work report = 10% marks

19. External Assessment (Summative Assessment):

Sixty per cent marks shall be assigned to each theory and practical paper as Summative Assessment. The distribution of marks in theory as well as practical papers will be in accordance to IQAC guidelines.

20. Internal Assessment(Formative Assessment):

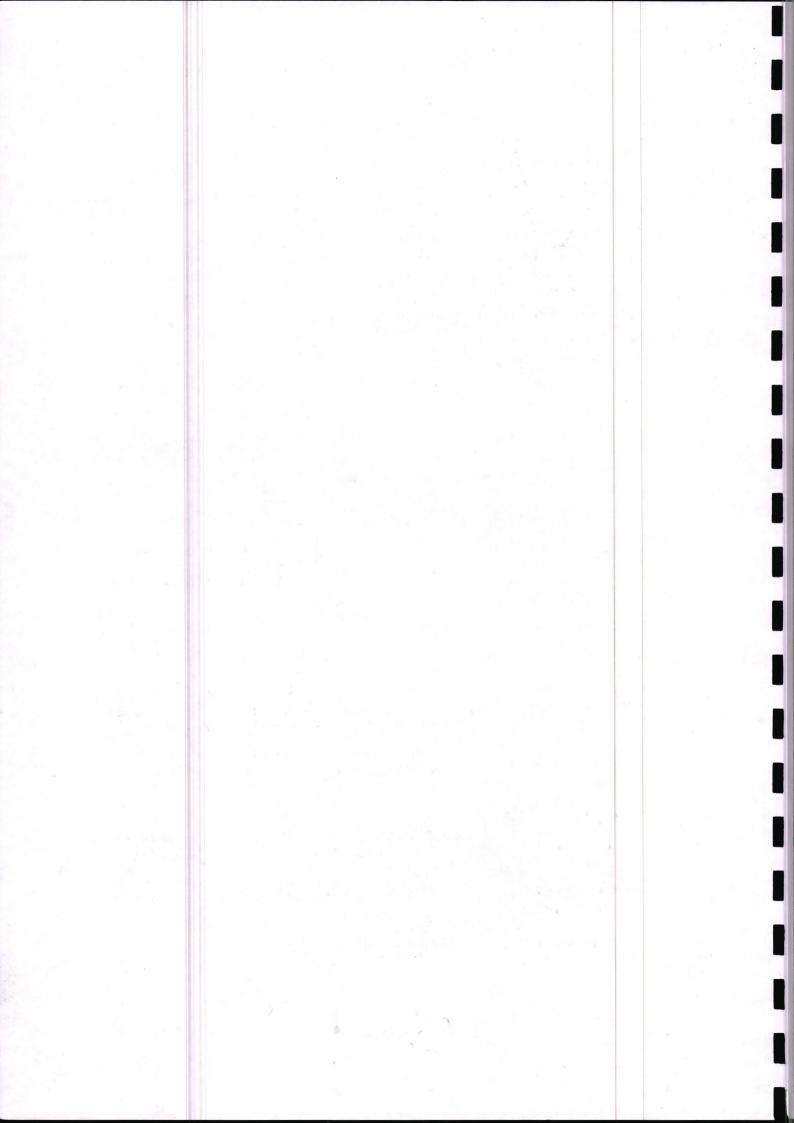
i. (Theory Papers)

a. Based on 40 Marks:

1	Assignment 5 marks			
2	Mid Term Test (10 Marks each)	20 marks		
3	Synergy / Project	10 marks		
4	Attendance	5 marks		
	Marks distribution for Attendar	nce in % age		
	95<=Attendance=100	5 marks		
	90<=Attendance<95	4 marks		
	85<=Attendance<90	3 marks		
	80<=Attendance<85	2 marks		
	75<=Attendance<80	1 marks		

b. Based on 20 Marks:

1	Assignment	5 marks		
2	Mid Term Test	10 marks		
3	3 Attendance 5 marks			
	Marks distribution for At	tendance in % age		
	95<=Attendance=100	5 marks		
	90<=Attendance<95	4 marks		
	85<=Attendance<90	3 marks		
	80<=Attendance<85	2 marks		
	75<=Attendance<80	1 marks		


ii. (Practical/Project/Dissertation)

i. Based on 40 Marks:

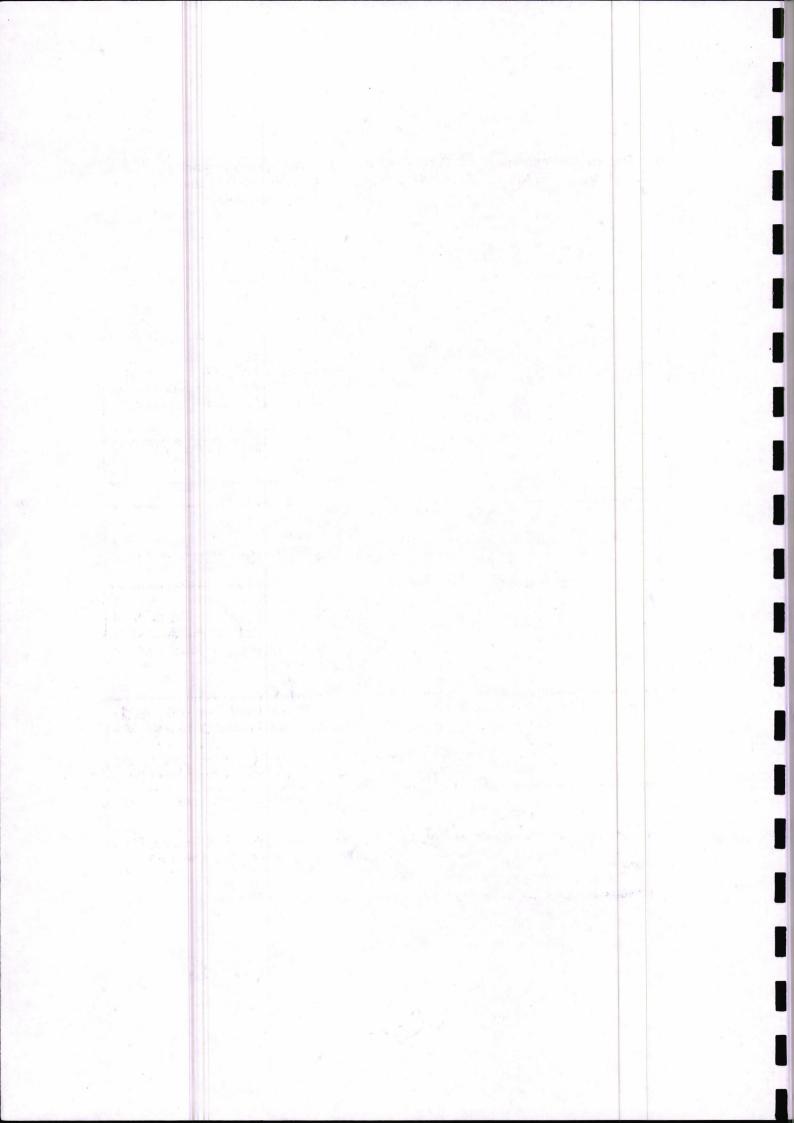
S.no.	40 Mark	s Internal	60 Marks External
1	Attendance	10 marks	
2	Practical/Project	10 marks	

pr C.S

New Felin. h

	File/Dissertation		30 marks for Practical
3	Internal Viva-Voce	20 marks	examination (Conduction/
	Marks distribution for At	- Demonstration)/Project	
	97.5<=Attendance=100	10 marks	File/Dissertation + 30 marks for Viva-Voce in End-term
	95<=Attendance<97.5	9 marks	Examination by External Experts
	92.5<=Attendance<95	8 marks	
	90<=Attendance<92.5	7 marks	
	87.5<=Attendance<90	6 marks	
	85<=Attendance<87.5	5 marks	
	82.5<=Attendance<85	4 marks	
	80<=Attendance<82.5	3 marks	
	77.5<=Attendance<80	2 marks	
	75<=Attendance<77.5	1 Marks	

ii. Based on 20 Marks:


s.no.	20 Marks I	30 Marks External			
1	Attendance	5 marks			
2	Practical/Project 5 marks File/Dissertation		15 marks for Practical		
3	Internal Viva-Voce	10 marks	examination (Conduction/		
	Marks distribution for A	Demonstration)/Project file/Dissertation + 15 marks for Viva-Voce in End-term			
	95<=Attendance=100 5 marks				
	90<=Attendance<95	4 marks	Examination by External Experts		
	85<=Attendance<90	3 marks			
could	80<=Attendance<85	2 marks			
	75<=Attendance<80	1 Marks	1		

- iii. In case of ex-students, those appearing for re-appear / improvement examination in any semester, their previous Internal Assessment marks will be counted. If there is any change in Scheme of Examination, then Internal Assessment marks will be modified accordingly.
- iv. The concerned teacher shall preserve records on the basis of which the Internal Assessment has been awarded and shall make the same available to the Controller of Examinations whenever required.
- v. The Head of the Department/ Dean of the Faculty shall ensure:
 - a. That the internal assessment marks are displayed for information of the students at least seven (07) days before the commencement of the examinations of each semester
 - b. That the internal assessment marks are submitted to the Controller of Examinations at least seven (07) days before the commencement of the examinations of each semester.

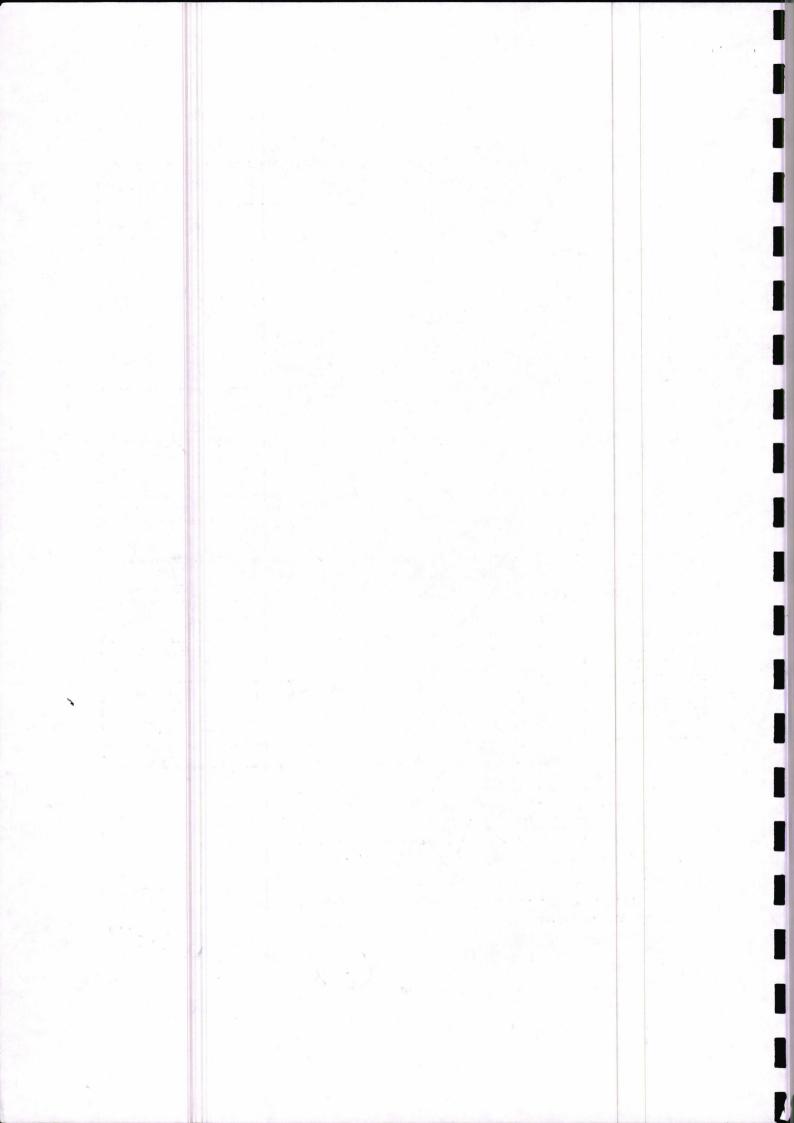
is

Nengter" for

21. Criteria for Promotion to Higher Semester:

The student shall be promoted to 2^{nd} and 4^{th} semester automatically without any condition of passing minimum number of papers. For promotion from 2^{nd} to 3^{rd} Semester, the student shall have to clear at least 50% papers of 1^{st} and 2^{nd} semesters taken together.

22. Credit Based Grading System:


i. Key Definitions:

Programme An educational programme leading to award of a Degree, D or Certificate.		
Course	Usually referred to as 'paper' is a component of a programme. All courses need not carry the same weight.	
Credit	A unit by which the course work is measured. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours for practical work/field work per week. A Research Based Paper /Project is equal to 6 credits.	
Credit Point	It is the product of grade point and number of credits for a course i.e. Credit Point = No. of credits in a course X "grade value" of the grade obtained in the course.	
Grade Point	There are two types of GPAs as given hereunder:	
Average (GPA)	Semester Grade Point Average (SGPA) Cumulative Grade Point Average (CGPA) Every student earns a distinct SGPA and a distinct CGPA at the end of each specified semester.	
SGPA	SGPA is a measure for performance of student in a Semester. It is the Point Average ratio of sum of the product of number of credits with the grade points scored by the student in all the courses taken by him/her and the sum of the number of credits of all the Courses undergone by the student i.e. SGPA (Si) = \sum (CixGi) / \sum Ci	
CGPA	CGPA is a measure of performance up to any Grade Gradespecified semester Point Average beginning from the first Semester. It is also calculated in the same (CGPA) manner as SPGA taking into account all the courses undergone by a student over all the semesters of programme i.e. CGPA = $\Sigma(\text{Cix Si}) / \Sigma$ Ci	
Grade Point	It is a numerical weight allotted to each letter grade on a 10-point scale.	
Letter Grades	It is an index of the performance of a student in a said course. The Grades are denoted by letters O, A+, A, B+, B, C, P, F and Ab.	

e C.V.

matcha

ii. Credits, Semesters, Courses and total Credit Points:

S.No	Course	Semesters	Core Courses	Discipline Specific elective Courses	Skill Enhancement Courses	Total Credi ts
1	M.Sc.(Physics)	4	72	16	12	100
2	M.Sc.(Chemistry)	4	74	12	14	100
3	M.Sc.(Mathematics)	4	78	12	10	100
5	M.Sc.(Forensic Sciences)	4	86	8	6	100
6	M.Sc.(Environmental Science)	4	60	24	16	100

Grading Table

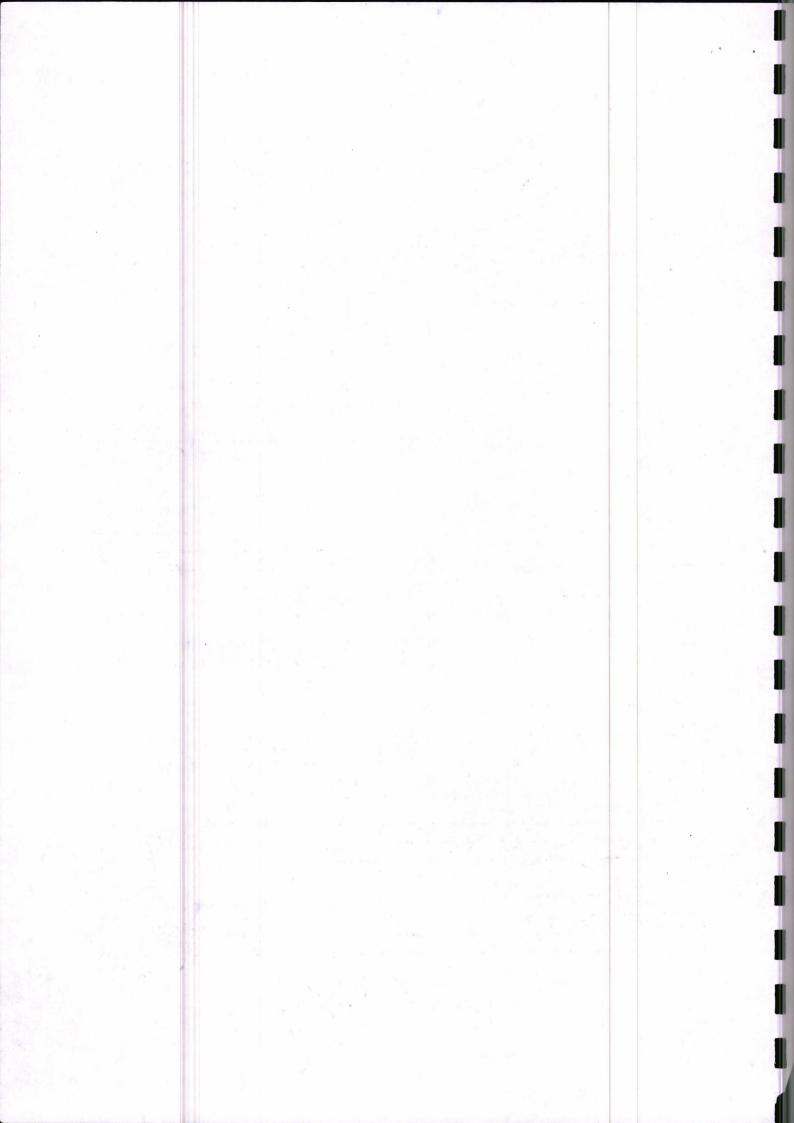
Range of Percentage of Marks	Letter Grade	Grade Points	Range of Grade Points	Classification
90 and above	O (Outstanding)	10	9-10	Outstanding
80 & above but less than 90	A+ (Excellent)	9	8< 9	Excellent
70 & above but less than 80	A (Very Good)	8	7< 8	1 st Div with Distinction
60 & above but less than 70	B+ (Good)	7	6< 7	1 st Division
50 & above but less than 60	B (Above Average)	6	5<6	2 nd Division
Above 40 but less than 50	C (Pass Average)	5	Above 4 <5	3 rd Division
40	P(Pass)	4	4	Pass
Less than 40	F (Fail)	0	_ &	Fail

Formula for Calculating percentage of marks:

 $CGPA \times 10 \text{ e.g. } 6.53 \times 10 = 65.3$

Formula for Grade Point calculation:

G = (Marks Obtained in Paper/Total marks of paper) x100.


Formula for Computation SGPA & CGPA

The SGPA is the ratio of sum of the product of the number of credits with the grad points i. scored by a student in all the courses taken by a students and the sum of the number of credits of all the courses taken by the students; i.e SGPA (Si) = $\sum (Ci \times Gi) / \sum Ci$,

S.S.

Nerger 11

10

where Ci is the no of credits of the ith course and Gi is the grad point Scored by the student in the ith course

ii. The CGPA is also calculated in the same manner taking into account all the courses undergone by the students over all the students over all the semesters of a programme, i.e

$$CGPA = \sum (Ci \times Si) / \sum Ci$$

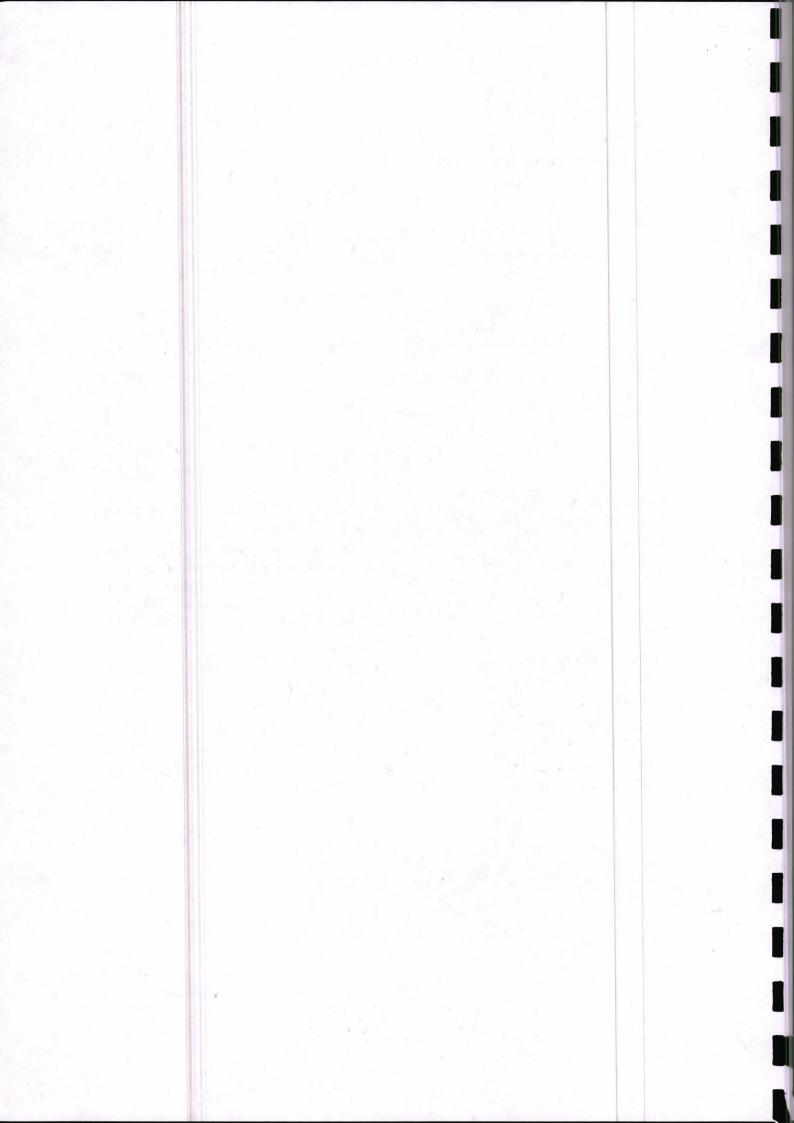
where Si is the SGPA of the ith semester and Ci is the total number of credits in that semester.

iii. The SGPA and CGPA shall be rounded up to 2 decimal points and reported in the transcripts. Result-Cum-Detailed Marks Card/ Transcript: Based on the above recommendations on letter grades, grade points and SGPA and CGPA, the DMC/ Transcript for each semester and a consolidated transcript in dictating the performance in all semester may be issued

Course	Credit	Grade Letter	Grade Point	Credit Points (Credit × Grad)
Course 1	3	Α	8	$3 \times 8 = 24$
Course 2	4	B +	7	$4 \times 7 = 28$
Course 3	3	В	6	$3 \times 6 = 18$
Course 4	3	0	10	$3 \times 10 = 30$
Course 5	3	C	5	$3 \times 5 = 15$
Course 6	4	В	6	$4 \times 6 = 24$
Maria St. S.	20			139

iv. 1. Illustration of Computation of SGPA and CGPA and Format for Transcripts

Thus, SGPA = 139/20 = 6.95


Similarly, Suppose the SGPA for 2^{nd} , 3^{rd} and 4^{th} semester are 7.85, 5.6, and 6.0 with credits 22, 24 and 22, respectively, then for a two-year PG Programme, the CGPA will be computed as followed,

 $CGPA = (20 \times 6.95 + 22 \times 7.85 + 24 \times 5.6 + 22 \times 6.0)/88 = 6.57$

Course	Credits	Grade Letter	Grad Point Block	Range of Grad Points(Actual Grade Value as per marks obtained	Earned Credit Point(Credit × Actual Grade Value)
Course 1	3	0	10	9.2	3×9.2=27.6
Course 2	3	A+	9	8.2	3×8.2=24.6
Course 3	4	А	8	7	4×7=28
Course 4	3	B+	7	6.7	3×6.7=27.6
Course 5	3	В	6	5.6	3×5.6=16.8
Course 6	4	С	5	4.7	4×4.7=18.8
	20				135.9

"S.S.

Nev 2/6/19

Thus, SGPA= 135.9/20 = 6.79

Similarly suppose SGPA for 2^{nd} , 3^{rd} , and 4^{th} semester are 7.85, 5.6 and 6.0 with credits 22, 24, and 22 respectively

 $CGPA = (20 \times 6.79 + 22 \times 7.85 + 24 \times 5.6 + 22 \times 6.0)/88 = 6.53$

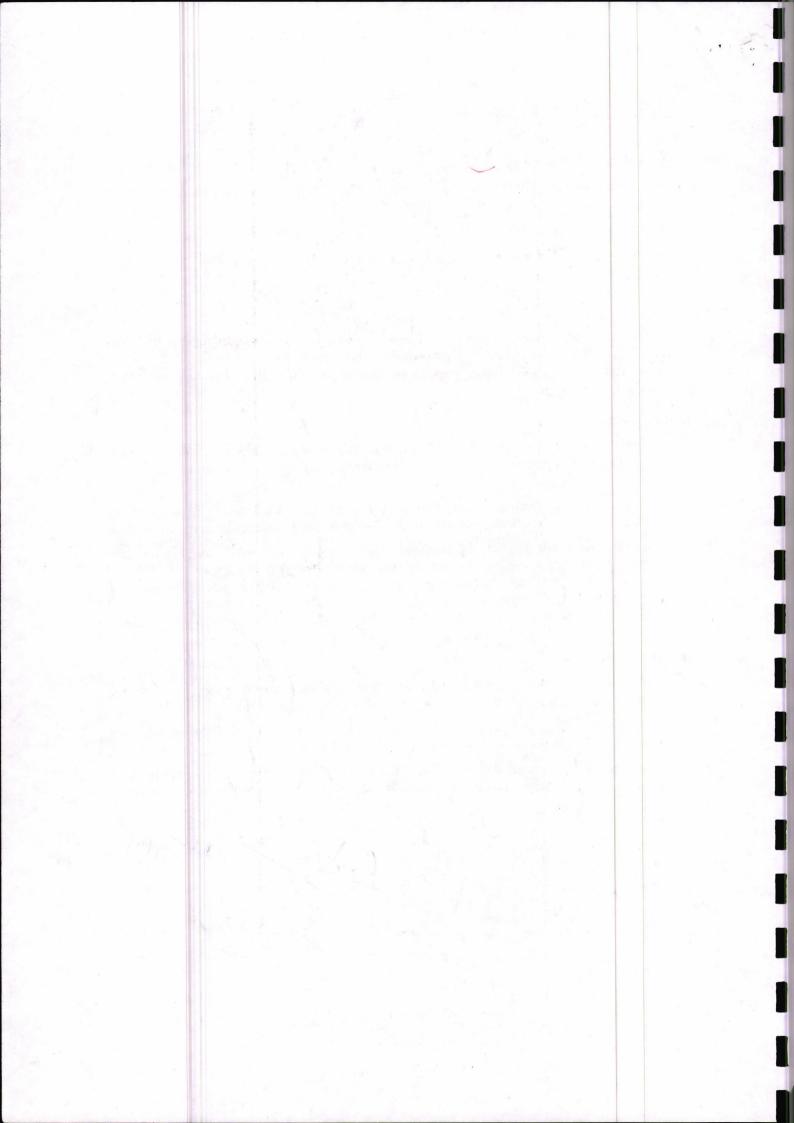
Calculating percentage of marks

 $CGPA \times 10 E.G.6.53 \times 10 = 65.3$

23. Pass criteria:

The minimum percentage of marks to pass the examination in each subject/paper will be 40% each in theory paper, practical /field work/Research Project etc. examination & internal assessment. The student has to pass in summative and formative (Internal) assessment separately.

24. Declaration of Results:


- i. The Controller of Examinations shall declare the results as early as possible after the conclusion of each examination, but before the start of teaching for the next academic session.
- ii. Each successful student/ the student placed in reappear shall receive a copy of the Detailed Marks Certificate/ Grade Card Sheet of each semester examination.
- iii. The student whose result is declared late without any fault on his/her part may attend classes for the next higher semester provisionally at his /her own risk and responsibility, subject to his /her passing the concerned semester examination. In case, the student fails to pass the concerned semester examination, his/her attendance/internal assessment in the next higher semester in which he / she was allowed to attend classes provisionally will stand cancelled.

25. Other Provisions:

- i. Nothing in the Ordinance shall debar the University from amending the Ordinance and the same shall be applicable to all the students whether old or new.
- ii. Any other provision not contained in the Ordinance shall be governed by the rules and regulations framed by the University from time to time.
- iii. In case of any dispute, the Vice-Chancellor will be competent authority to interpret the rules and his interpretation shall be final.

New 2/11/19 And Side

12

UNIVERSITYS' COMMON COURSE ORDINANCE POSTGRADUATE & UNDERGRADUATE PROGRAMS

1. Preamble:

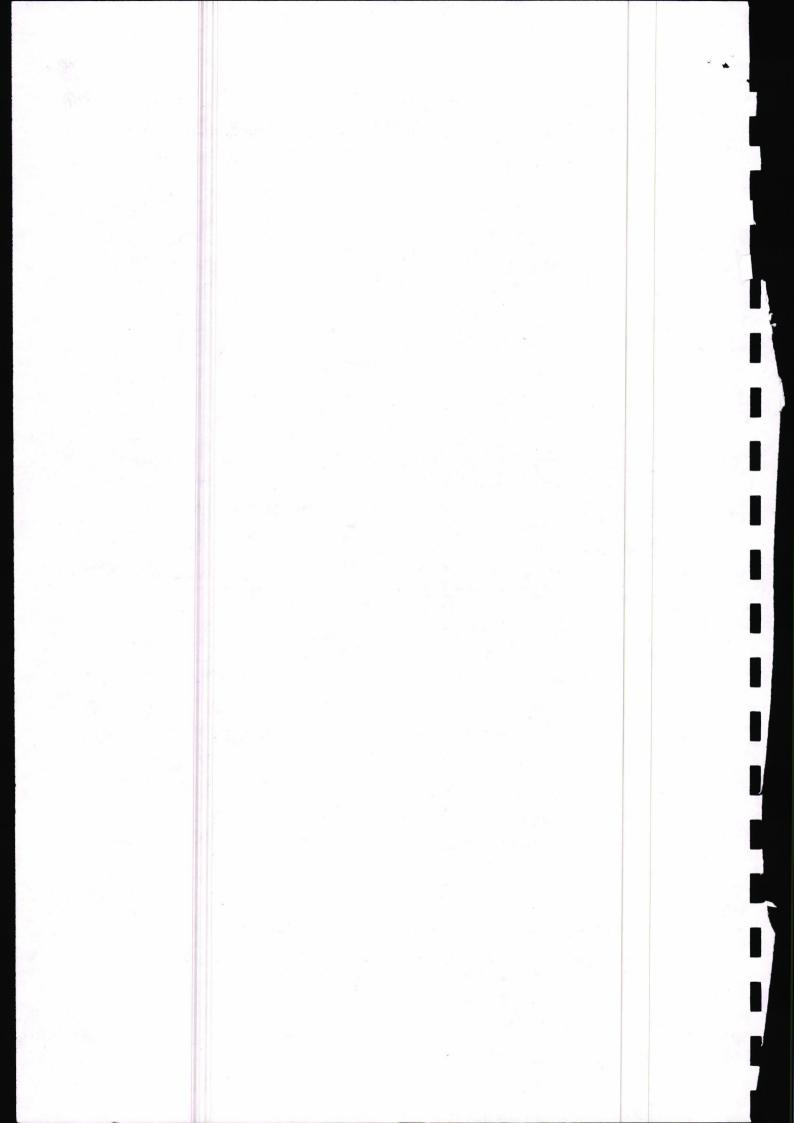
The University Grants Commission (UGC) has initiated several measures to bring equity, efficiency and excellence in the Higher Education System of the country. The important measures taken to enhance academic standards and quality in higher education include innovation and improvements in curriculum, teaching-learning (online & offline) process, examination and evaluation systems, besides governance and other matters.

The UGC has formulated various regulations and guidelines from time to time to improve the higher education system and maintain minimum standards and quality across the Higher Educational Institutions (HEIs) in India. The academic reforms recommended by the UGC in the recent past have led to overall improvement in the higher education system.

Department of Mathematic, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram with the aim to enhance academic standards in quality of higher education has adopted the UGC guidelines in its Postgraduate (PG) program (M. Sc. Mathematics).

The grading system is considered to be better than the conventional marks system and in order to facilitate student mobility across institutions within India and across countries the community grade point average (CGPA) has been introduced in this PG program. The guidelines are as follows:

CHOICE BASED CREDIT SYSTEM (CBCS):


The CBCS provides an opportunity for the students to choose courses from the prescribed pool of courses comprising core, elective, skill and ability enhancement courses. The courses can be evaluated uniform grading system in the higher education system. This will benefit the students to move across institutions within India to begin with and across countries. The uniform grading system will also enable potential employers in assessing the performance of the candidates. In order to bring uniformity in evaluation system and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations, the UGC has formulated the guidelines to be followed.

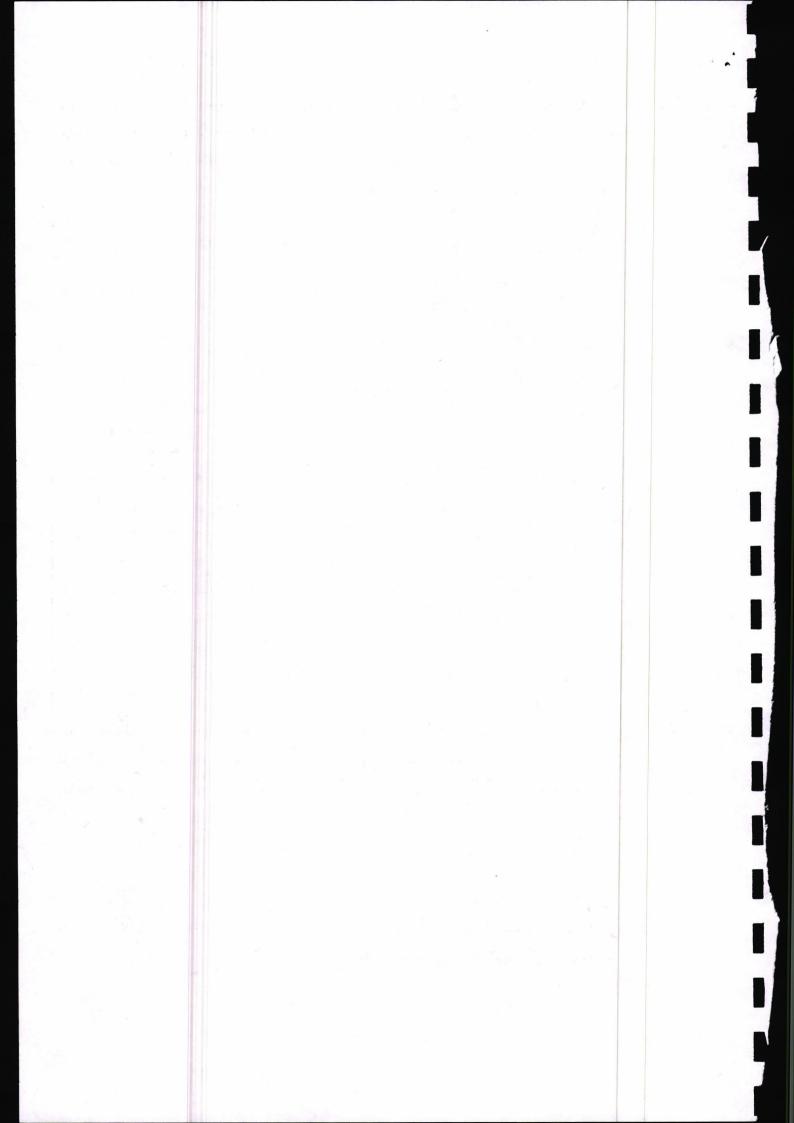
Outline of Choice Based Credit System:

a. **Core Course:** A course, which should compulsorily be studied by a candidate as a core requirement is termed as a Core course.

leve

Page 1 of 14

- b. Elective Course: Generally, a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/ subject of study or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the candidate's proficiency/skill is called an Elective Course.
 - i. **Discipline Specific Elective (DSE) Course**: Elective courses may be offered by the main discipline/subject of study is referred to as Discipline Specific Elective. The University/Institute may also offer discipline related Elective courses of interdisciplinary nature (to be offered by main discipline/subject of study).
 - ii. **Dissertation/Project:** An elective course designed to acquire special/advanced knowledge, such as supplement study/support study to a project work, and a candidate studies such a course on his own with an advisory support by a teacher/faculty member is called dissertation/project.
- c. Skill Enhancement Course: The course based upon the content that leads to Knowledge enhancement.
- d. Ability Enhancement Compulsory Course: The course based upon the content that leads to development professional of ability.
- e. **Open Elective Course:** The course based upon the content that enhances interdisciplinary knowledge.


2. Justification/Score of the Course:

Mathematics is advancing at spectacular rate and it is about logical analysis, decision making, deductions, precision and is also about quantity, space, change and structure. Mathematics has a pervasive influence on our day to day life, and contributes to the wealth of the society. The structure of curriculum is designed using time tested and Internationally well-known books and is also based on the feedback from the best programmes available in our country. The curriculum consists different branches of mathematics that have a wide range of practical applications such as Algebra, Analysis, Mathematical Modeling, Computer Programming, Mathematical Statistics and Operation Research. The curriculum is so developed that the study of mathematics can satisfy a wide range of abilities.

Those who qualify in M.Sc. Mathematics are in fortunate position of having a wide range of career choices. The abilities to use logical thought, to make deduction from assumption, to use advanced

Nut

Page 2 of 14

concepts are all enhanced by a Mathematics degree course. It is for this reason that Mathematicians are increasingly in demand. With M.Sc. Mathematics degree, one should be able to turn his/her hand to Finance, Statistics, Engineering, Computers, Teaching or Accountancy with a success not possible to other post graduates.

3. Duration of the Course:

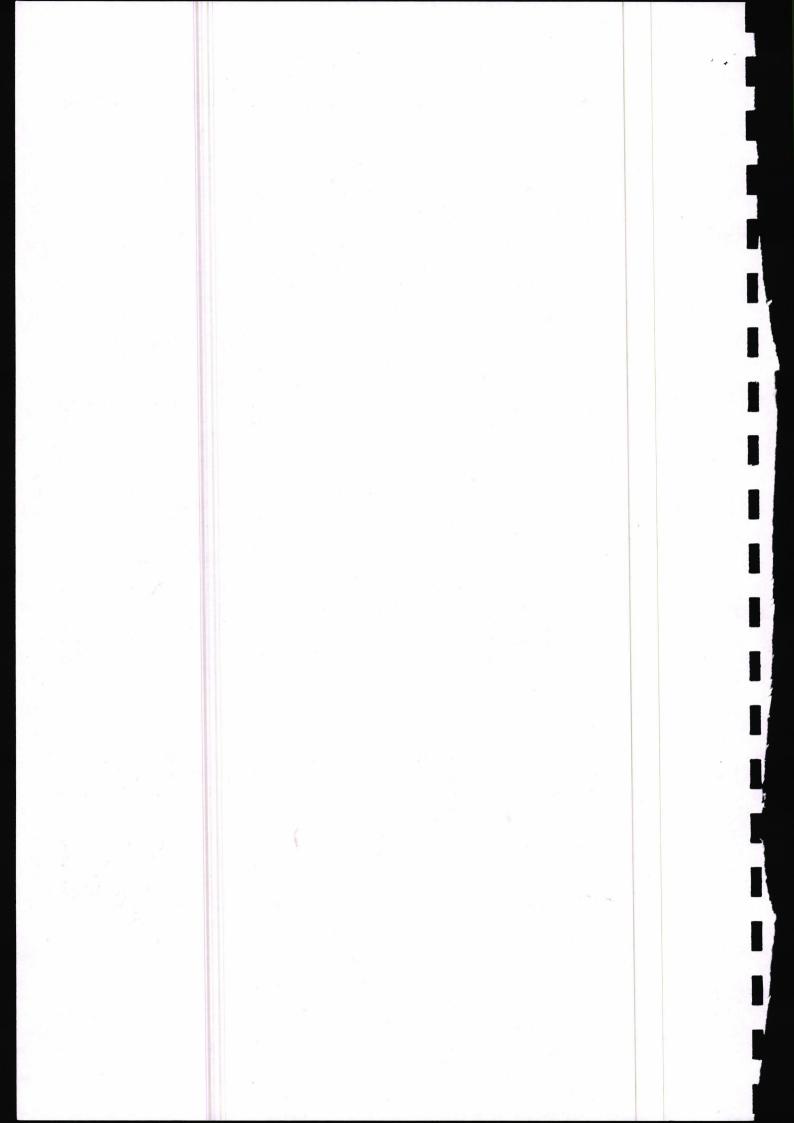
Name of the Programme	Duration
Master of Science (Mathematics)	02 Years (04 Semesters)

4. Admission to the Course:

(a) Name of the Degree: Master of Science (Mathematics)

(b) Eligibility for Admission:

Name of the Programme	Eligibility
Master of Science (Mathematics)	For admission to the 1 st Semester of M.Sc.
	(Mathematics) course, the candidate must have
	passed B.Sc. (Non-Medical) /B.Sc.(H) in
	Mathematics with 50% marks (45% marks in
	case of SC/ST candidates of Haryana only) in
	aggregate or equivalent grade from any
	university recognized by UGC.


Migration/Lateral entry admission in second year/third semester of an academic programme, wherever permitted, shall be considered on the basis of merit in the qualifying examination and subject to the availability of seats in the academic programme where admission is desired. Student who ever granted lateral entry admission is required to pay the requisite fee as admissible to the fresh batch.

(c) Migration Admission:

A student of any other University/Institute/College, recognized by the concerned regulatory/statutory body like UGC etc., shall be eligible for migration (admission) to the University. Migration will be allowed, if the seat is available in thatprogrammeand cannot be claimed as a right by the candidate. Migration can only be allowed, if the student studied the programme in regular mode and is not having any backlog.

we

Page 3 of 14

In addition to the Application Form for admission, student has to provide the following documents "

- (i) Marksheets/result of all the examinations passed.
- (ii) Detailed syllabi for all the courses studies till date.
- (iii) The migration Certificate and Character Certificate stating that no disciplinary/academic action has been taken or pending.
- (iv) All other relevant documents which are required for admission in the programme in which migration is sought.

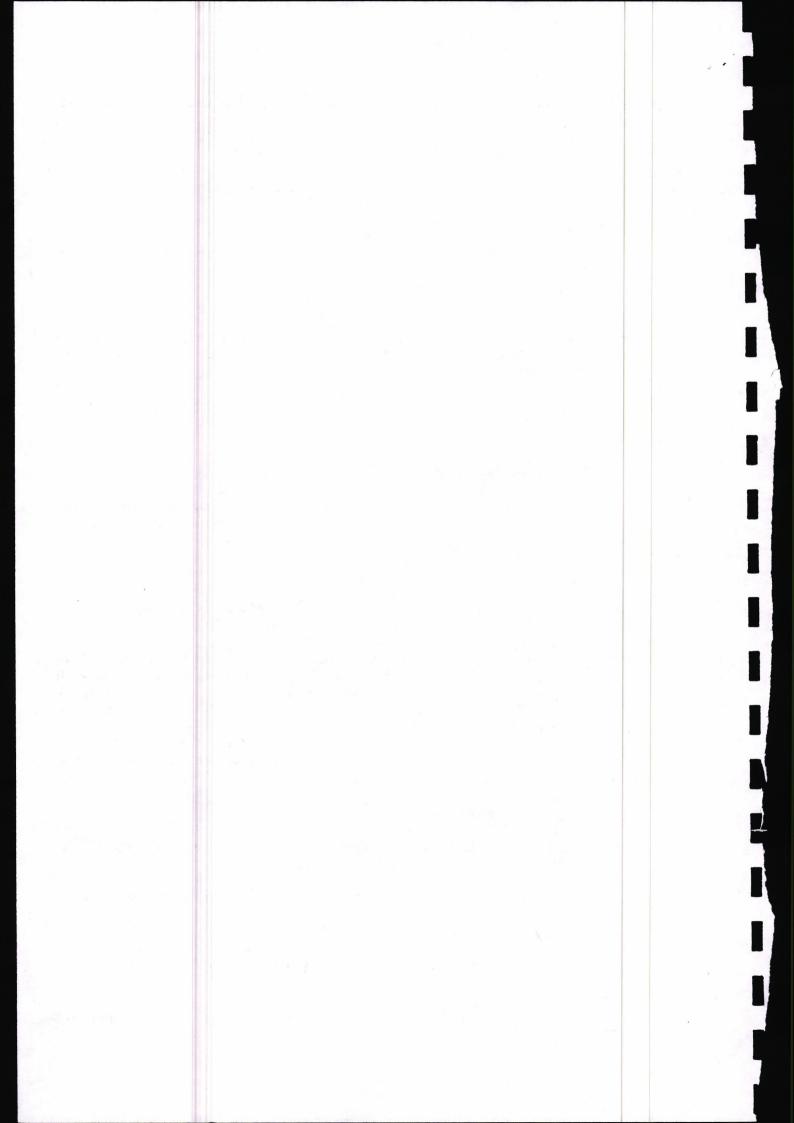
Studies and Examinations passed by the candidate are recognized as equivalent to the corresponding examination of the University and he fulfills the minimum qualification and other eligibility laid down for admission to the programme to which he/she seeks migration in the University.

The migration case will be submitted to the University Equivalency Committee to verify all the relevant records and candidate will be admitted on the recommendations of the Committee only.

(d) Student Exchange and Credit Transfer

For a student exchange from or to a University, credit transfer from or to a University is possible only when there is an academic tie-up with the University and mutually agreed student exchange and credit transfer policy is approved by the Academic council. Student under the exchange programme shall not be considered as migrated.

The University may enter into collaboration with other Universities worldwide whereby students of those Universities can spent a semester or more at SGT University and study courses, accordingly to mutually agreed guidelines. Such students will be known as Associate Students of SGT University for the duration they spend at SGT University and will be governed for all academic matters of the University. Reciprocally, SGT University students may be permitted to spend a semester or more and study courses in collaborating Universities with or without transfer of credits.


(e) Schedule of admission and payment of fees:

The admission schedule, along with last date for the submission of admission forms and payment of fees, shall be fixed and notified by the Registrar with the approval of the Vice-Chancellor from time to time duly approved by the Academic Council/Board of Management of the University.

Students detained due to shortage of attendance and re-admitted will attend regular classes with alternative batch and will be required to pay the Tuition Fee and Examination Fee and make over the attendance criteria as prescribed in the Ordinance. However, ex-students will be exempted from making up the deficiencies of the attendance criteria.

5. Mode of Selection of Candidates for Admission:

Ner

On the basis of the merit of the qualifying examination or as per the guidelines of the Statutory Bodies/Haryana Private Universities Act, 2006 as amended from time to time.

6. Medium of Instructions:

The medium of the instruction and the examination shall be English only.

7. University Examinations:

(a) End Term Semester Examinations:

The examination for all the Odd Semesters shall ordinarily be held in the month of November/December and of the Even Semesters in the month of May/June.

Fail/re-appear candidates of the Odd Semesters will re-appear in exams as an exstudent in the subsequent exams of the Odd Semesters. Similarly, for the Even Semesters he/she will re-appear in exams in the subsequent exams of the Even Semesters. However, candidates appearing in the Final Semester examination (Regular) may appear simultaneously in his/her re-appear paper(s) of lower semesters i.e. previous semesters as arranged by the Controller of Examinations.

(b) Scheme of the Examinations/Distribution of Marks:

The Scheme of examination, distribution of marks in various papers along with the credit system and the syllabus of the course shall be as prepared by the respective Board of Studies of the Faculty and duly approved by the Academic Council of the University from time to time.

(d) Attendance Requirements/Eligibility to Appear in Examination:

The student should fulfill the following criteria to be eligible for appearing in the End Term Semester Examination:

(i) He/she should have 75% attendance during the respective semester in each subject which is mandatory. Only 5% relaxation in the required attendance on account of illness and other contingencies by the Dean/Principal may be condoned. Further, the Vice Chancellor may also condone additional 5% of the required attendance in an extreme emergency case on merit basis. The relaxation of the attendance by the Dean/Principal/Vice Chancellor cannot be claimed as a matter of right by the students; it shall depend on facts and circumstances of individual case.

If a student does not meet the attendance criteria as mentioned above, he/she will not be permitted to appear in the End Term Examination. He/she can appear in the subsequent Odd/Even Semester examination after making up the deficiencies in the attendance.

- (ii) He/she is not a defaulter in payment of any dues of the SGT University
- (iii) No disciplinary action is pending against the student.
- (iv) He/she should be on the rolls of the Faculty/College during the semester.

Ne

(v) The shortage of attendancecan be condoned by the competent authority as mentioned below in the table to the maximum limit and the same will be within the limit of the attendance criteria as mentioned in Point No. (i) above :

Sr. No	Exemptible attendance	Ground of Exemption	of
1.	5%	For illness and contingencies of serious nature by the Dean & the Vice Chancellor	competent shortage of nce.
2.	All periods of the day of donation	Voluntary blood donation to the Blood Bank.	s com shor ance
3.	All periods of the day of Examination.	For appearing in the supplementary examinations (Theory /Practical/Viva-voce	Faculty is compete condone shortage e/ attendance.
4.	Maximum of 10 days attendance during a semester	For participation in University or Inter- Collegiate Sports Tournaments/ Youth Festivals, NCC/NSS Camps/University Educational Excursions, Mountaineering Courses	Dean of the Faculty authority to condor lecture/ atter
5.	Maximum of 15 days attendance during a semester	For participation in Inter-University Sports Tournaments/Youth Festivals/Exhibition/ Symposium	Deal auth

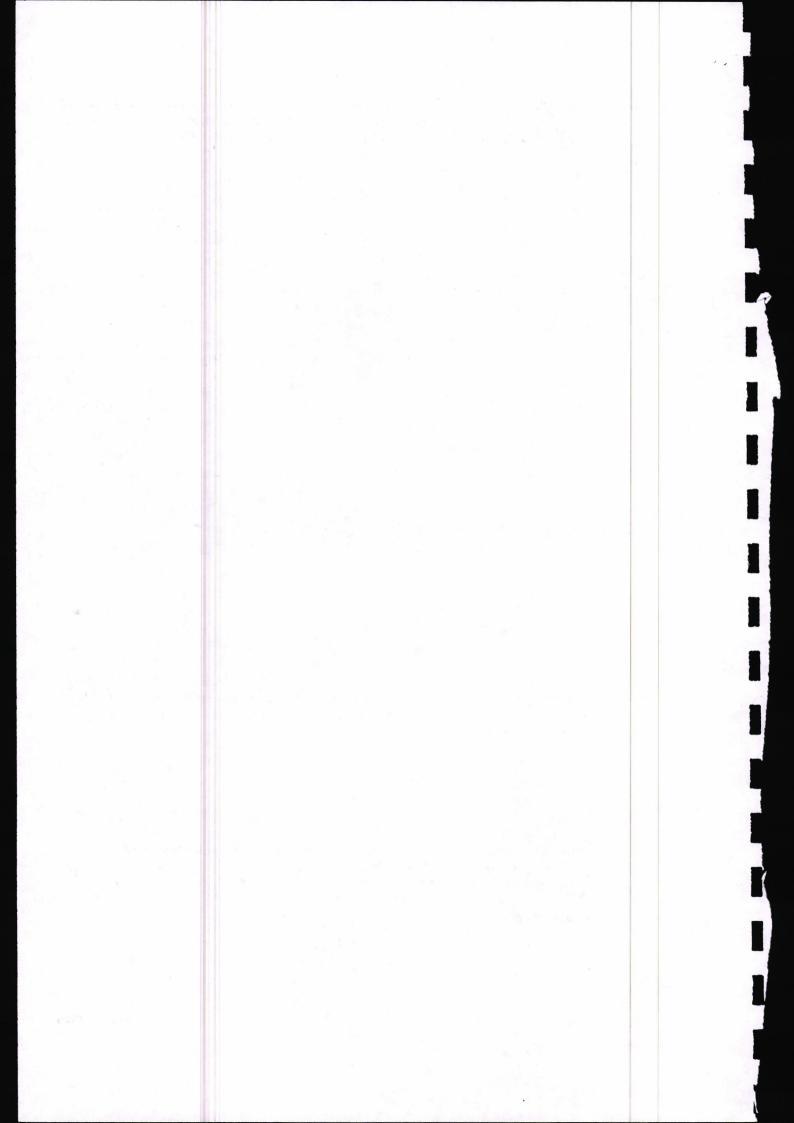
Provided that :

- (i) He/she has obtained prior approval of the Dean of the Faculty.
- (ii) Credit may be given only for the days on which lectures were delivered or tutorials or practical work done during the period of participation in the aforesaid events.

(e) Attendance Shortage Warning:

Attendance shortage warning will be regularly displayed on the Faculty's Notice Board every month and shall also be informed to the parents/guardians by the respective Course Coordinator.

In case, a student falls short of attendance during any semester, his result will be marked as "DETAINED" which can be removed subsequently after completing attendance requirement.


(e) Submission of Examination Forms:

All the students are required to submit their Examination Form through University ERP only before the last date as notified by the Controller of Examinations. The Examination Forms of the eligible students shall be validated by the Dean and will be forwarded to the Controller of Examinations within the prescribed date. In case, examination form is not submitted by scheduled last date, a late fee will be charged as prescribed by the University from time to time.

8. Setting of Question Papers:

Nur

Page 6 of 14

The Dean of the Faculty shall supply the panel of internal and external examiners duly approved by the Board of Studies to the Controller of Examinations. The paper(s) will be set by the examiner(s) nominated by the Vice-Chancellor from the panel of examiners.

The question papers will be moderated by the Moderation Committee in the Chairmanship of Dean/Principal of the Faculty/College who is proficient in the subject in the office of the Controller of Examinations. The moderation will be done to see the difficulty level and that no question is out of syllabus and there is no mistake in the questions and the committee will amend/correct the paper accordingly.

The examiner(s) will set the question papers as per the criteria laid down in the Scheme of Examinations as approved by the Board of Studies/Academic Council.

9. Appointment of Examiners:

The examiners will be appointed as per the following guidelines with the approval of the Vice Chancellor by taking due care that his/her own relative is not appearing in the examination :

- level (a) internal/external examiner should be of the of an Assistant An Professor/consultant/equivalent or above in the respective in subject а University/Institution/College/Hospital.
- (b) One external and one internal examiner will jointly conduct the practical examination.
- (c) External examiners shall not be from the same University and should preferably be from outside the University.
- (d) External examiners shall be rotated at an interval of 3 years.

10. Evaluation Process – Theory, Practical & Internal Assessment:

(a) Evaluation of Answer Books:

The answer books may be evaluated either by the paper setter or any other internal or external examiner to be nominated by the Controller of Examinations with the approval of the Vice-Chancellor from the panel of examiners approved by the Board of Studies.

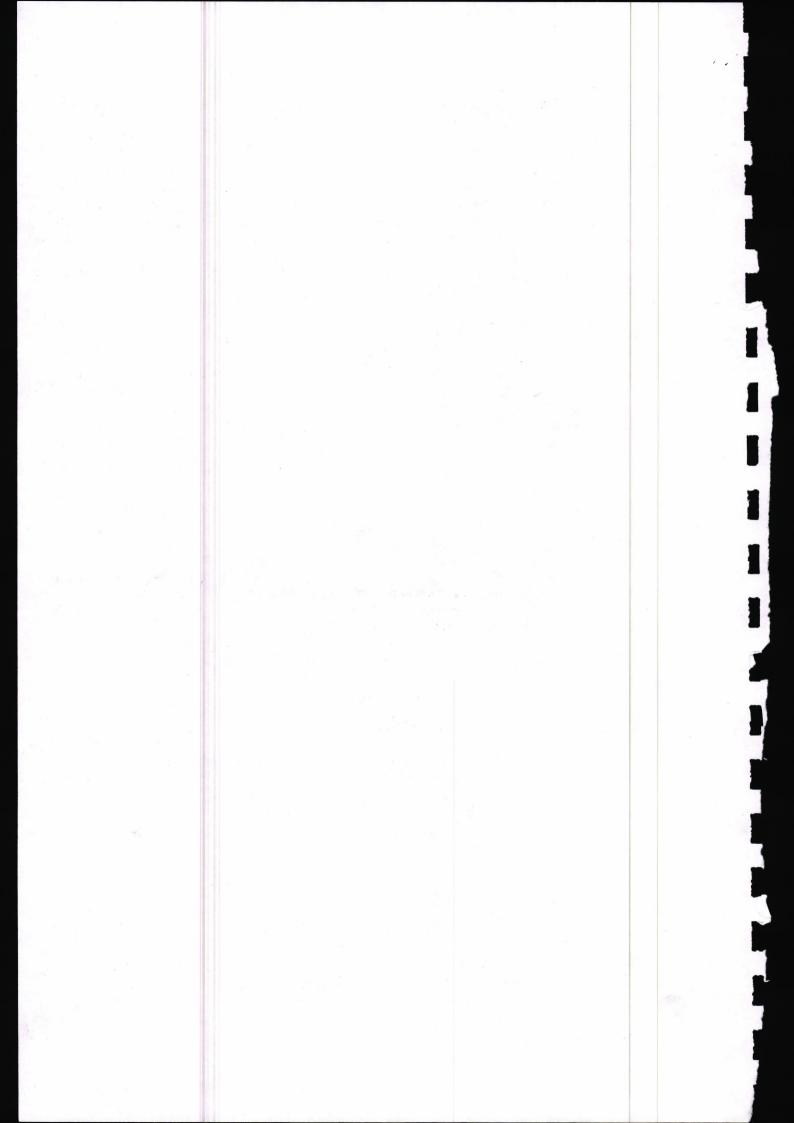
(b) Re-evaluation of Answer Books:

The students can apply for Re-evaluation/Re-checking of any paper through the HOD/Dean of the Faculty by paying fee as per re-evaluation rules of the university.

(c) Internal/Formative Assessment:

Formative assessment in each theory paper shall have the following distribution:

(i) Attendance


Allendance	
75 to 80	01
Above 80 to 85	02
Above 85 to 90	03
Above 90 to 95	04
Above 95 to 100	05

neve

- 25 - 1 - 1 - 1 - 1 - 1

5 Marks

Page 7 of 14

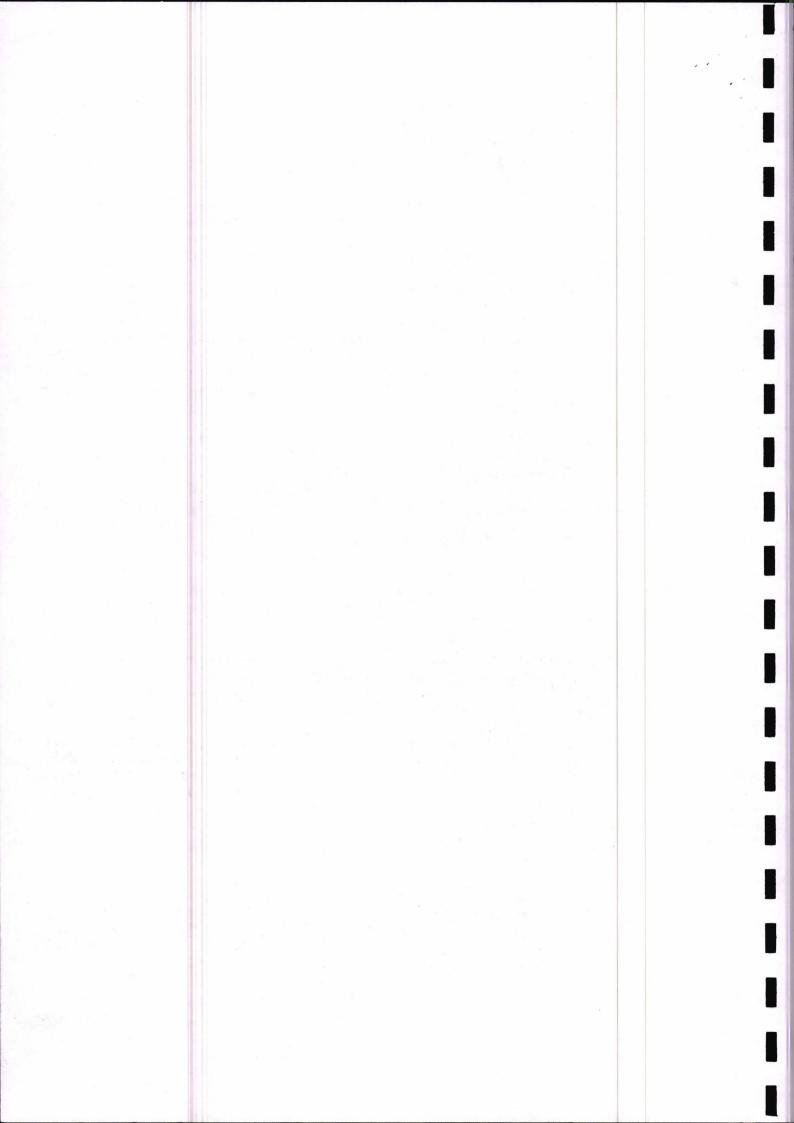
(ii)	Midterm Class Tests (subjective & objective)		20 marks	
(iii)	Assignment	=	05 marks	
(iv)	Problems/Projects/Seminar/Case Studyetc	=	10 marks	

The concerned teacher shall make continual assessment weekly over the content covered during the week and also shall have record of the same. It shall preferably be displayed monthly and finally cumulatively before the start of the semester examination. In case, any student fails to clear the Internal Examination, the Vice Chancellor may relax and permit for Re-examination considering the request of the student on merit with the recommendations of the respective Deans.

- (i) In case of ex-students, those appearing for re-appear/improvement examination in any semester, their previous Internal Assessment marks will be counted.
- (ii) The concerned teacher shall submit records to the HoD/Dean on the basis of which the Internal Assessment has been awarded and HoD/Dean shall make the same available to the Controller of Examinations whenever required.
- (iii) That the internal assessment marks are submitted tothe Controller of Examinations at least 7 (seven) days before the commencement of the end-term examinations of each semester.

(d) Practical Examinations:

(i) Appointment of Examiners:


The practical examinations shall be conducted by a Board of two Examiners consisting of one internal and one external examiner to be nominated by the Vice-Chancellor from the panel of examiners recommended by the Board of Studies.

- Distribution of Marks: Practical examination for summative examination in all semesters will have the following distribution:
 - (aa) Summative assessment distribution (30 Marks):

	Demonstration/conduction/presentation	=	20 marks	
	Viva Voce examination	=	10 marks	
(ab)	Formative assessment distribution (20 Ma	arks):		
	Attendance	=	5 marks	
	75 to 80 01			
	Above 80 to 85 02			
	Above 85 to 90 03			
	Above 90 to 95 04			
	Above 95 to 100 05			
	Laboratory work report	=	5 marks	
	Midterm oral examination/assessment	=	10 marks	
	Δ	/		

wel

Page 8 of 14

(e) Project:

(i) Topic Selection and Appointment of Guide/Supervisor

Each student will be assigned a Teacher as Guide/ Supervisor from the Department. Topic of the Project will be approved by the Dean of the respective Faculty on the recommendations of the Teacher Guide/supervisor.

(ii) Evaluation:

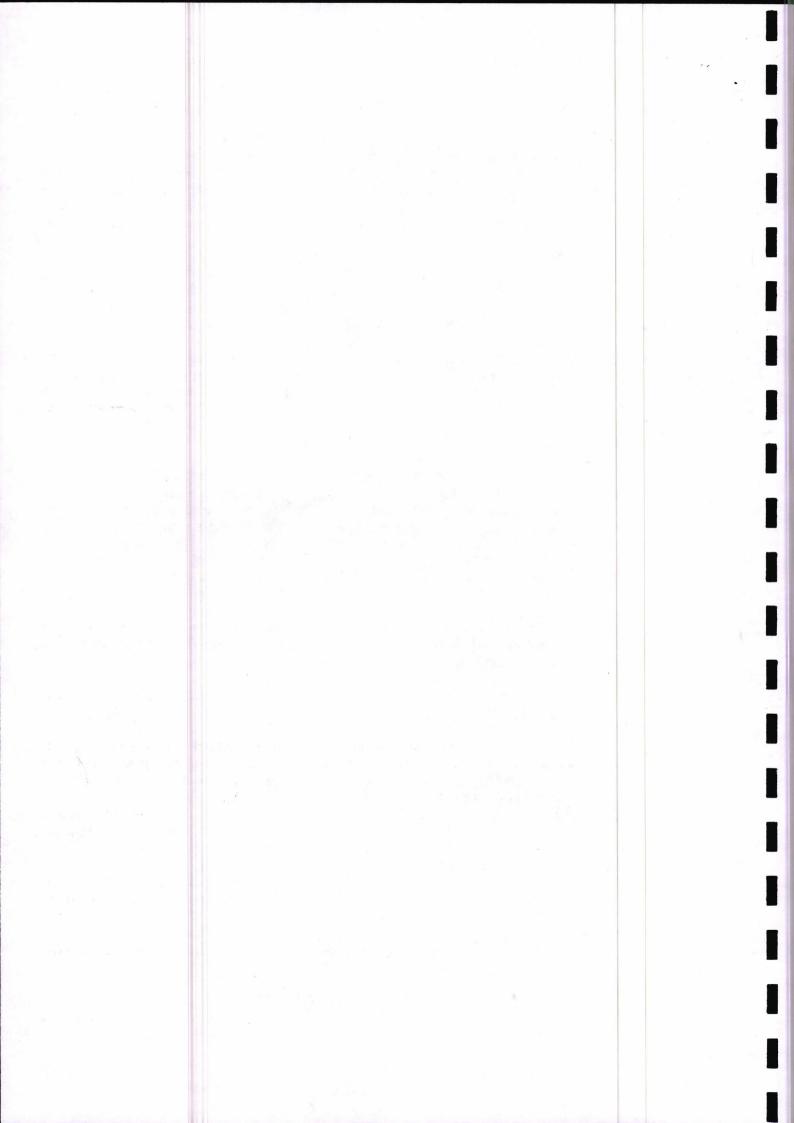
The examination for Project shall be conducted by a Board of Two Examiners consisting of one internal and one external examiner to be nominated by the Vice-Chancellor from the panel of examiners recommended by the Board of Studies. Evaluation of the Project Report will be done by the External examiner or by Internal Examiner. The student will submit the project report in the form as specified by the department atleastbefore 15 days before the commencement of the examination, failing which it will be acceptable only with late fee of Rs. 2000/-

(f) Field Training

Evaluation of the field training will be for the marks as prescribed in the Scheme of Examinations of the respective course/program. The formative assessment of field training shall be based on the presentation, case reports and log sheets as well as on the basis of viva voce and reports adjudged by the joint board of external and/or internal examiners.

(g) Re-appearance for Improvement:

A student may re-appear in any theory paper prescribed for a semester after making the prescribed Examination Fee as notified by the University from time to time, on foregoing in writing his/her previous performance in the paper/s concerned. This can be done in the immediate subsequent semester examination only (for example, a student re-appearing in paper prescribed for 1stSemester examination may do so along with subsequent 3rdSemester examination and shall not be allowed to appear along with papers for 5thSemester.


A candidate who had cleared examination of Third Academic Year (Vth and Vlth Semesters) may re-appear in any paper of Vth and Vlth Semester only once at the immediate subsequent examinations on foregoing in writing her/her previous performance in the paper/s concerned, within the prescribed span period. Likewise will be applicable for the Fourth Academic Year also.

In the case of re-appearance in paper, the result will be prepared on the basis of candidate's current performance in the examination.

In the case of a candidate, who opts to re-appear in any paper/s under the aforesaid provisions, on surrendering her/his earlier performance but fails to re-appear in the paper/s concerned, the marks previously secured by the candidate in the paper/s in which he/she has failed to re-appear shall be taken into account while determining his/her result of the examination held currently.

pul

Page 9 of 14

11. Criteria for Promotion to Higher Semester(s):

(a) For programs of the duration of 4 Academic Years (8 Semesters).

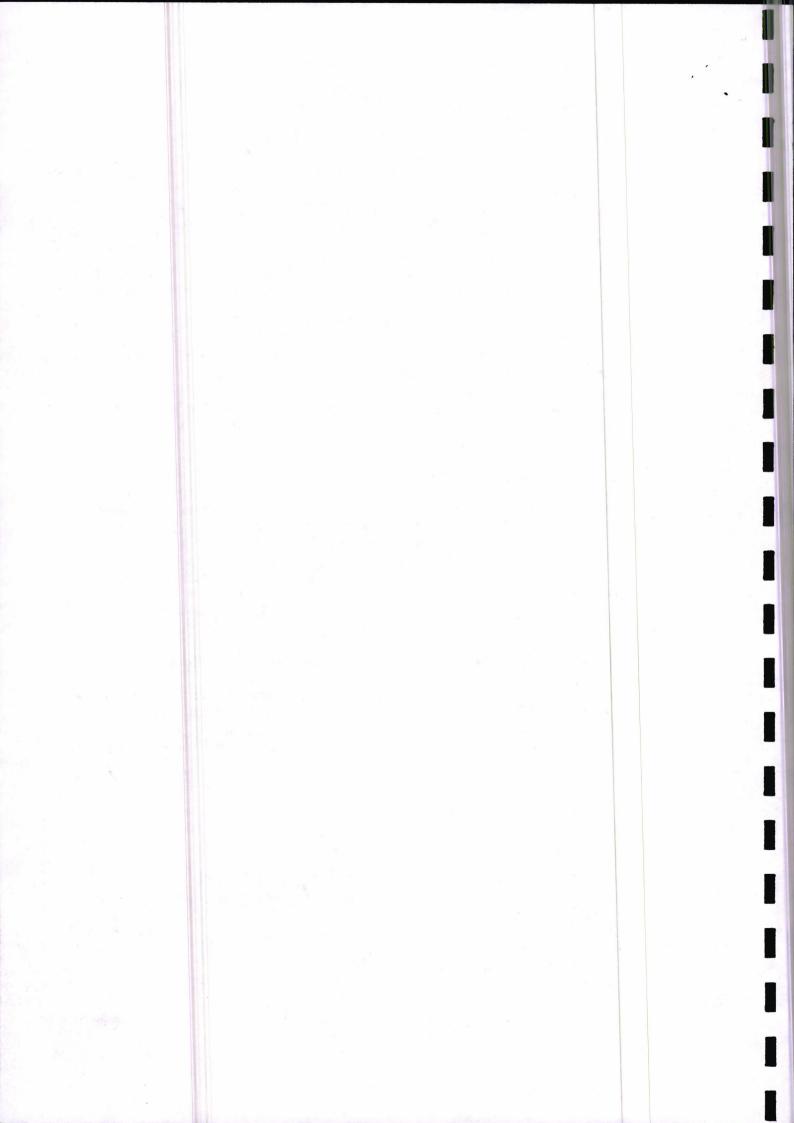
The student will be promoted to the next semesters irrespective of the number of papers cleared/passed in the lower semesters. But he/she will not be allowed to appear in the examination of the 4th Semester unless he/she has cleared atleast 50% papers of 1st and 2nd semesters taken together and further the students will not be allowed to appear in the examination of the 6th semester unless he/she has cleared 1st and 2nd semesters and 50% papers of 3rd and 4th semesters taken together. Furthermore, the students will not be allowed to appear in the examination of the examination of the 8th semesters taken together. Furthermore, the students will not be allowed to appear in the examination of the 8th semester unless he/she cleared 1st, 2nd, 3rd and 4th semesters and 50% papers of 5th and 6th semesters taken together.

(b) For programs of the duration of 3 Academic Years (6 Semesters).

The student will be promoted to the next semesters irrespective of the number of papers cleared/passed in the lower semesters. But he/she will not be allowed to appear in the examination of the 4th Semester unless he/she has cleared atleast 50% papers of 1st and 2nd semesters taken together and further the students will not be allowed to appear in the examination of the 6th semester unless he/she has cleared 1st and 2nd semesters and 50% papers of 3rd and 4th semesters taken together.

(c) For program of the duration of 2 Academic Years (4 Semesters).

The student will be promoted to the next semesters irrespective of the number of papers cleared/passed in the lower semesters. But he/she will not be allowed to appear in the examination of the 4th Semester unless he/she has cleared 50% subjects of 1st and 2nd semesters taken together.


12. Pass % criteria and grading system:

- (a) The minimum percentage of marks to pass a course/paper will be as given below. Each Faculty is required to adopt any one scheme out of the below mentioned and incorporate the same in their respective Scheme of Examinations.
 - (i) The pass percentage for each component i.e. End Term Examination (Theory/Practical) and Internal Assessment is 40% separately (for the courses adopting Table No. 3).
 - (ii) The pass percentage for Internal Assessment will be 40% to be eligible to appear in End Term Examination, whereas overall pass percentage will be 50% in the End Term Examination (Theory/Practical) including Internal Assessment (For all other courses) (for the courses adopting Table No. 1).
 - (iii) The pass percentage for each component i.e. End Term Examination (Theory/Practical) and Internal Assessment is 40% separately (for the courses adopting Table No. 2).
 - (iv) To qualify for award of degree, a Grade Point of 4.0, 5.0 and 6.0 respectively and minimum numbers of credits required for that degree as defined in the Scheme of Examinations of the concerned course.

The Department of Mathematics has opted option no. ii for the assessment of MSc (Mathematics) students.

Luc

Page 10 of 14

(b) Credit Based Grading System:-

Key Definitions:

Programme: An educational programme leading to award of a Degree, diploma or certificate.

Course: Usually referred to, as 'papers' is a component of a programme. All courses need not carry the same weight

Credit: A unit by which the course work is measured. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours for Practical Work/Field Work/ Research Based Paper /Project per week.

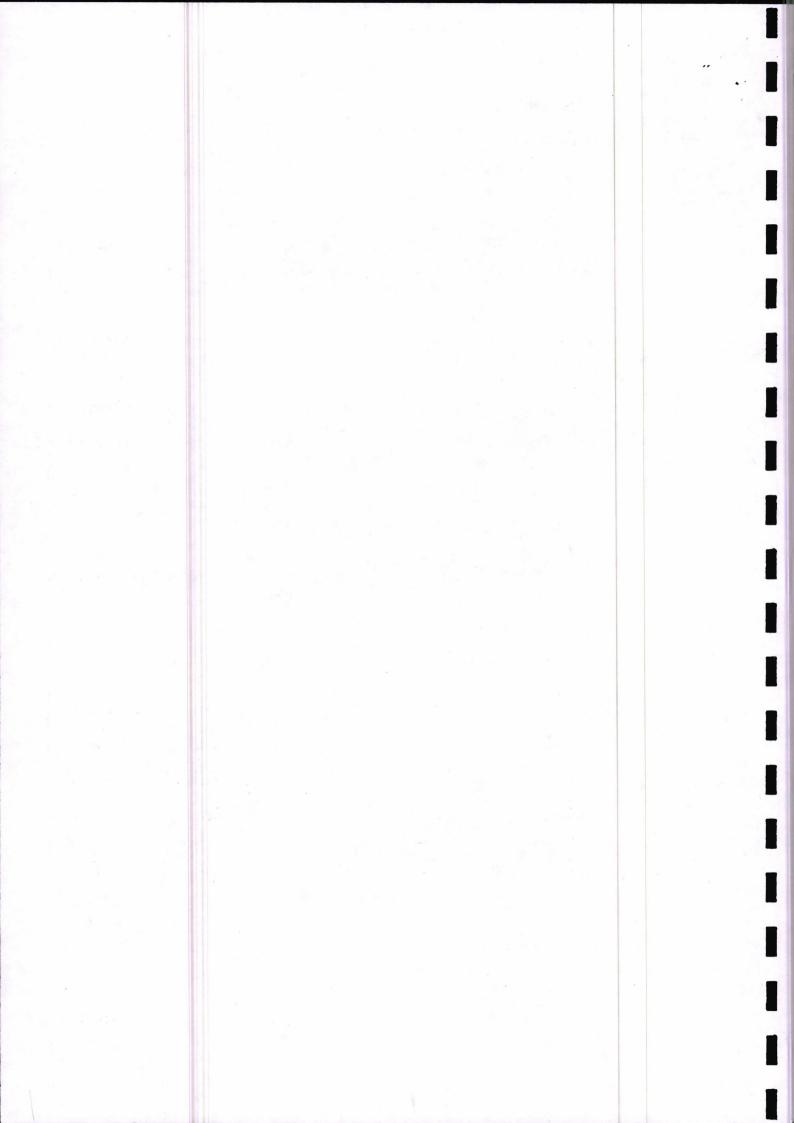
Credit Point: It is the product of grade point and number of credits for a course i,e, Credit Point = No. of credit in a course \mathbf{x} "grade value" of the grade obtained in the course.

Semester Grade Point Average (SGPA): The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the Courses undergone by a student, i.e. SGPA(Si) = $\sum (Cix Gi) / \sum Ci$

Cumulative Grade Point Average (CGPA):CGPA The is also calculated in the same manner taking into account all the courses undergone by a student over all the semesters of programme, i.e, CGPA = $\sum (Cix Si) / \sum Ci$

Grade Point: It is a numerical weight allotted to each letter grade on a I0-point scale with 7/6/5LETTER GRADES: It is an index of the performance of students in a said course.

Grades are denoted by letters 0, A+, A, B+, B, C, P and F etc.


Grade and its corresponding values. (For the courses where the pass marks are 50%)

[Faculty of Engineering & Technology, Law, Behavioural Sciences (Except B. Sc. (Clinical Psychology) & BA (Hons.) (Psychology), Fashion & Design, Mass Communication & Media Technology, Agricultural Sciences (Except M. Sc. programs), Education, Hotel & Tourism Management, Commerce & Management, Science, Allied Health Sciences, Physiotherapy]

Range of Percentage of Marks	Letter Grade	Grade Points	Range of Grade Points	Classification
90% and above	O (Outstanding)	10	9-10	Outstanding
80% and above but less than 90%	A+ (Excellent)	9	8<9	Excellent
70% and above but less than 80%	A (Very Good)	8	7<8	1 st Division with Distinction
60% and above but less than 70%	B+ (Good)	7	6<7	1 st Division
Above 50% but less than	B (Above Average)	6	>5<6	2 nd Division

Lare

Page 11 of 14

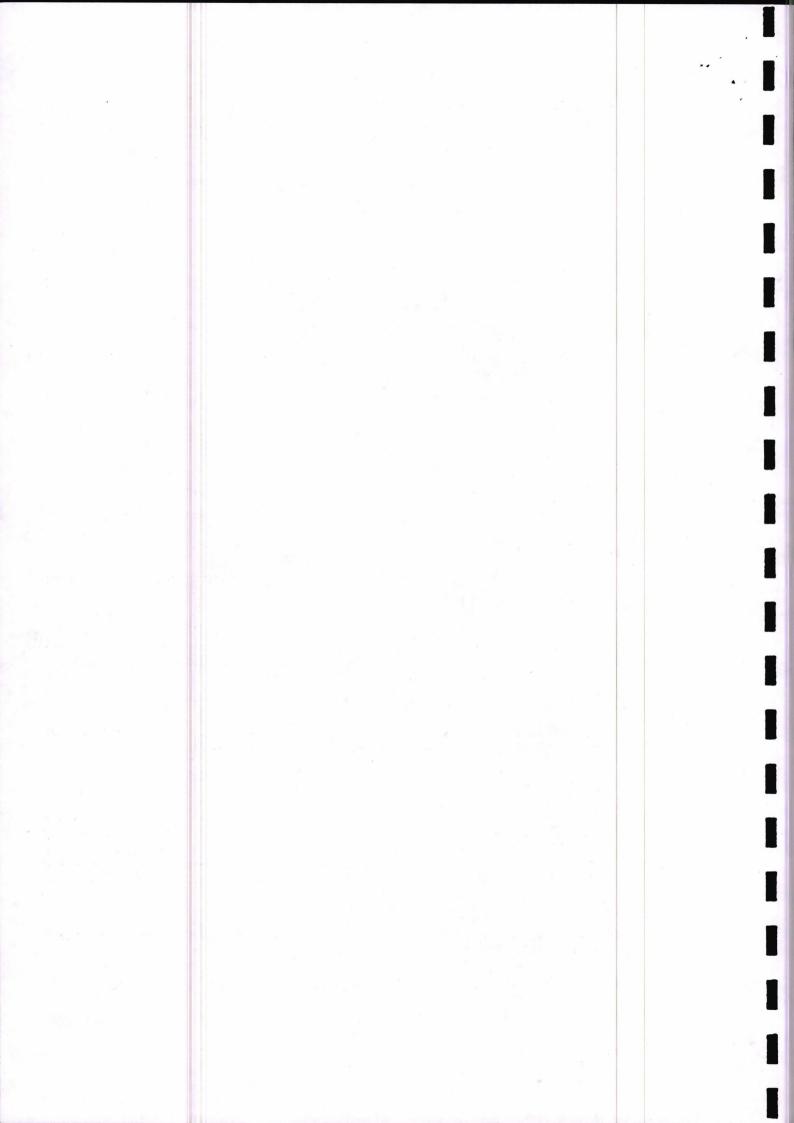
60%				
Minimum Pass Marks 50%	P (Pass Average)	5	5	Pass
Below minimum pass marks	F (Fail)	0	-	Fail

Grade and its corresponding values. (For the courses where the pass marks are 60%)

Range of Percentage of Marks	Letter Grade	Grade Points	Range of Grade Points	Classification
90% and above	O (Outstanding)	10	9-10	Excellent
80% and above but less than 90%	A+ (Excellent)	9	8<9	1 st Division with Distinction
70% and above but less than 80%	A (Very Good)	8	7<8	1 st Division
Above 60% but less than 70%	B (Good)	7	>6<7	2 nd Division
Minimum Pass Marks 60%	P (Pass)	6	6	Pass with 1 st Division
Below minimum pass marks	F (Fail)	0	-	Fail

Faculty of Agricultural Sciences (M. Sc. programs)

Grade and its corresponding values. (For the courses where the pass marks are 40%)


Faculty of Behavioural Sciences [B. Sc. (Clinical Psychology) & BA (Hons.) (Psychology)]

Range of Percentage of Marks	Letter Grade	Grade Points	Range of Grade Points	Classification
90% and above	O (Outstanding)	10	9-10	Outstanding
80% and above but less than 90%	A+ (Excellent)	9	8<9	Excellent
70% and above but less than 80%	A (Very Good)	8	7<8	1 st Division with Distinction
60% and above but less than 70%	B+ (Good)	7	6<7	1 st Division
50% and above but less than 60%	B (Above Average)	6	5<6	2 nd Division
Above 40% but less than 50%	P (Pass Average)	5	>4<5	3 rd Division
Minimum Pass Marks 40%	P (Pass Average)	4	4	Pass
Below minimum pass marks	F (Fail)	0	-	Fail

Semester Grade Point Average (SGPA):

SGPA (Si)=Σ(Ci ×Gi)/ΣCi

wel

Where Ci is the number of credits of the ith course and Gi is the grade point scored as per marks obtained by the student in the ith course. Further, G is calculated as given below:

G=[Marks obtained in paper/Total marks of paper]×10 (The multiplication factor)

Cumulative Grade Point Average (CGPA):

CGPA=**Σ(Ci ×Si)/ΣCi**

Where Si is the SGPA of the ith Semester and Ci is the total number of credits in that Semester.

Formula for calculating percentage of marks;

CGPA×10 (The multiplication factor)

(c) Grace Marks :

Maximum 1% of total marks (Maximum to 5 marks) excluding internal assessment marks can be awarded to a student in one academic year.

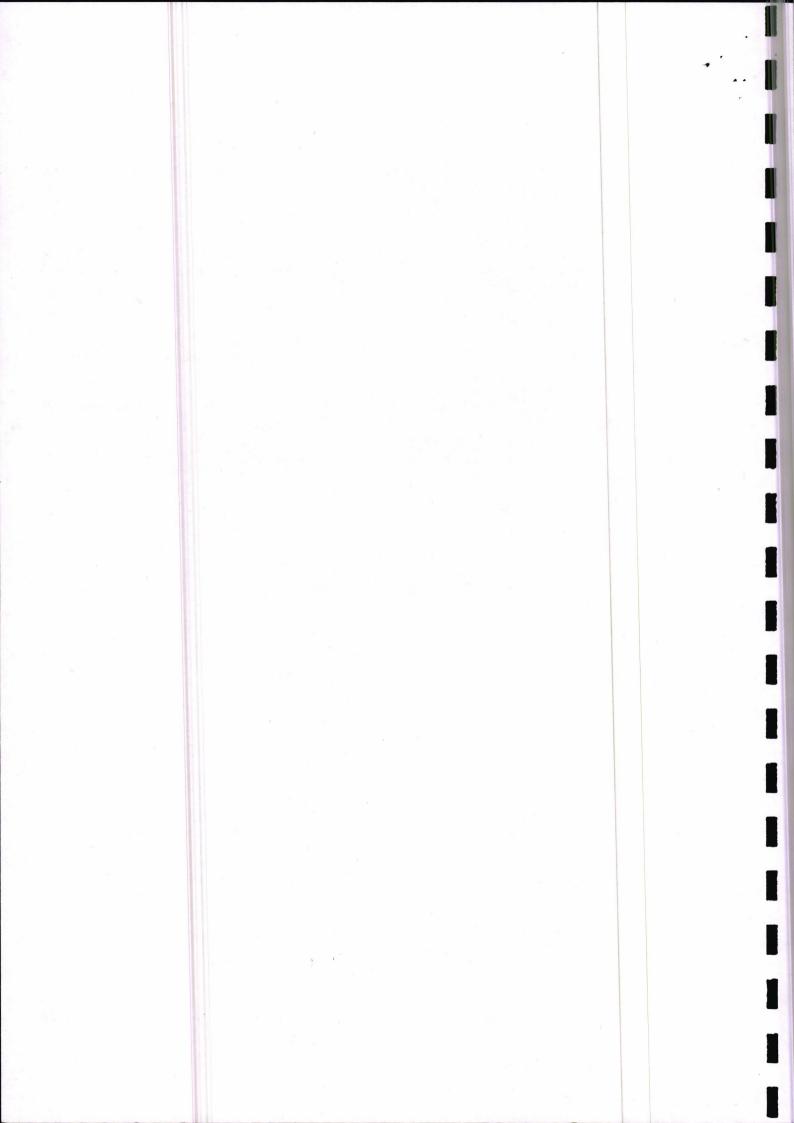
13. Declaration of Results:

- (a) After the semester/year examinations are over, the Controller of Examinations shall publish the results of those students who had appeared in the examinationspreferably within 45 days of last paper of course examination.
- (b) Each successful student/ the student placed in reappear shall receive a copy of the Detailed Marks Certificate/ Grade Card Sheet of each semester examination.
- (c) The successful students after the 4th, 6thor 8thsemester examination shall be equated in seven ascending letter grade (P to O) and grade points from 4 to 10 on the basis of final CGPA obtained by him/her in the 1st to 4th, 1st to6th or 1st to 8th semester examinations.

14. Discharge of the students from the program

The student who does not clear all the papers with in the stipulated time frame span period i.e. duration of the program + 02 years will be discharged from the programme.

15. Re-admission


As per the chapter 2, Clause 2.4.5. of the First Ordinance of the University, if a student remains absent, without leave of absence, from his/her classes for a continuous period of seven working days without any valid reason, medical or otherwise, his/her name shall be struck off from the rolls of the University. However, the student may be re-admitted on payment of the prescribed fee by the University from time to time, if Dean/Principal is satisfied that re-admission of the student will not fall short of requisite percentage of the attendance.

If a student is re-admitted, all his previous records are revived under the current structure, regulations and scheduled of fees.

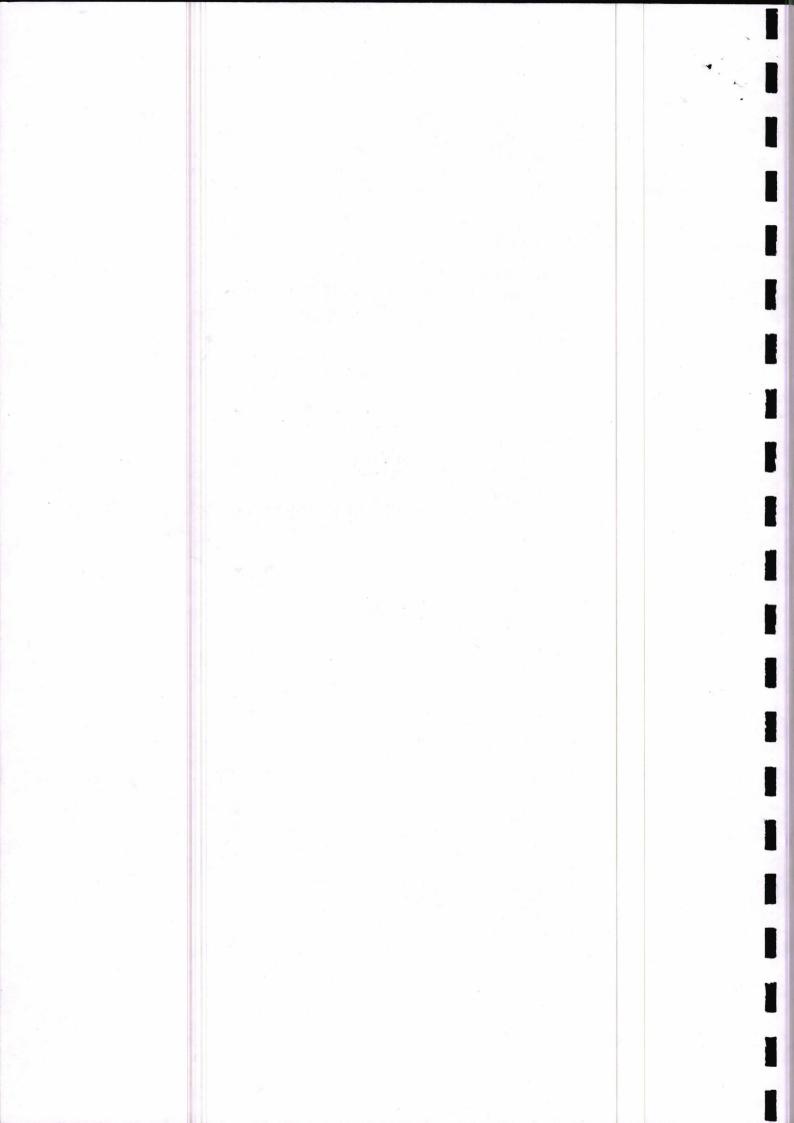
A student, who has been rusticated or expelled from University, cannot be re-admitted.

Neve

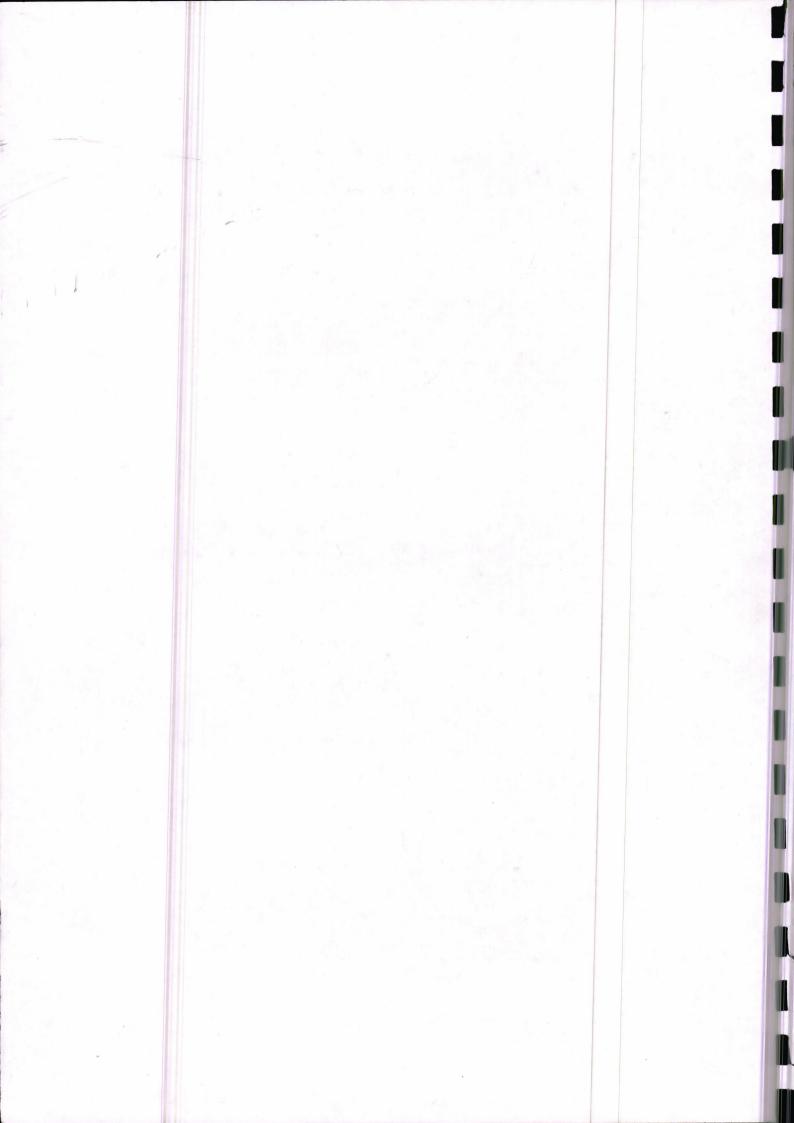
Page 13 of 14

16. Simultaneously pursuing other degree

As per the guidelines of the University Grants Commission, students will not be permitted to pursue two degrees simultaneously. If at any time, it comes to the notice of the University, his/her degree will be cancelled without any prior notice.


17. Appearing for additional papers after award of degree

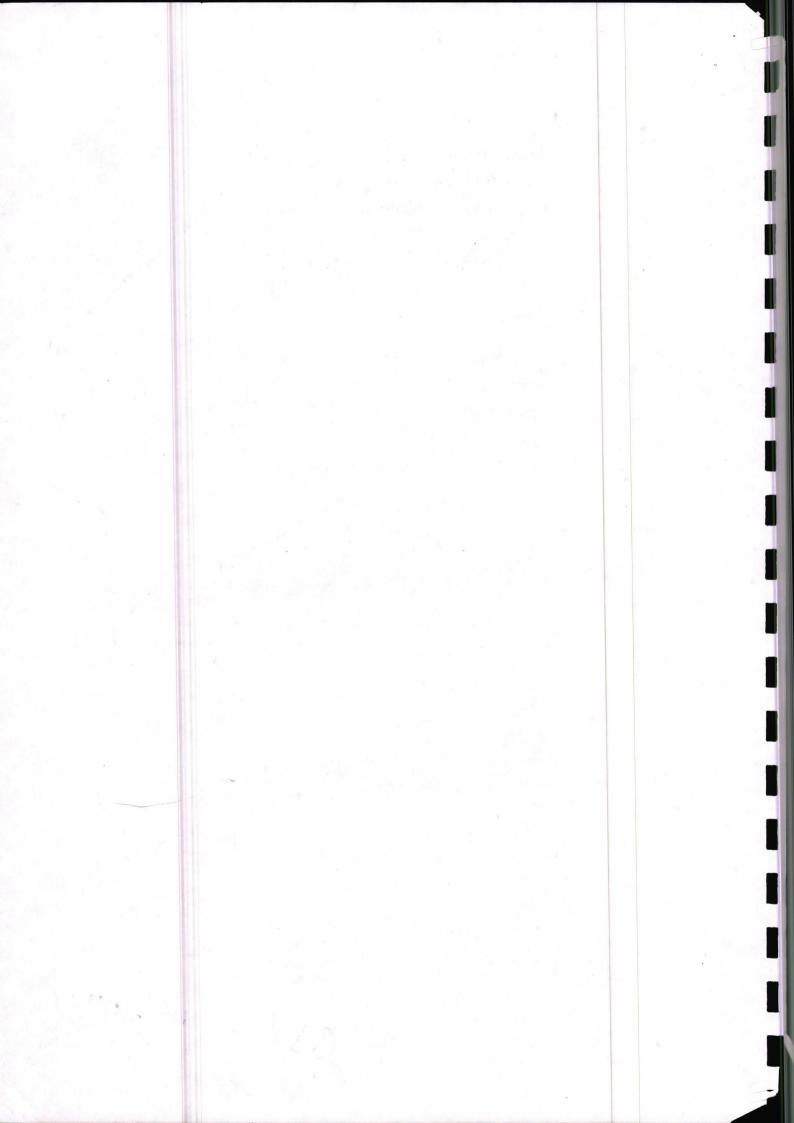
The student will be allowed to appear for additional papers available in that degree course after the completion of course within the span period subject to attendance requirement and internal assessment. A separate marksheet will be issued for such paper(s).


18. Other Provisions:

- (a) Nothing in this Ordinance shall debar the University from amending the Ordinance and the same shall be applicable to all the students from the date of its implementation.
- (b) Any other provision not contained in the Ordinance shall be governed by the rules and regulations framed by the University from time to time.
- (c) In case of any interpretation, The Vice-Chancellor is empowered in this regard and his interpretation shall be the final.
- (d) This ordinance will be effective from the AdmissionsSession 2019-20.

pens

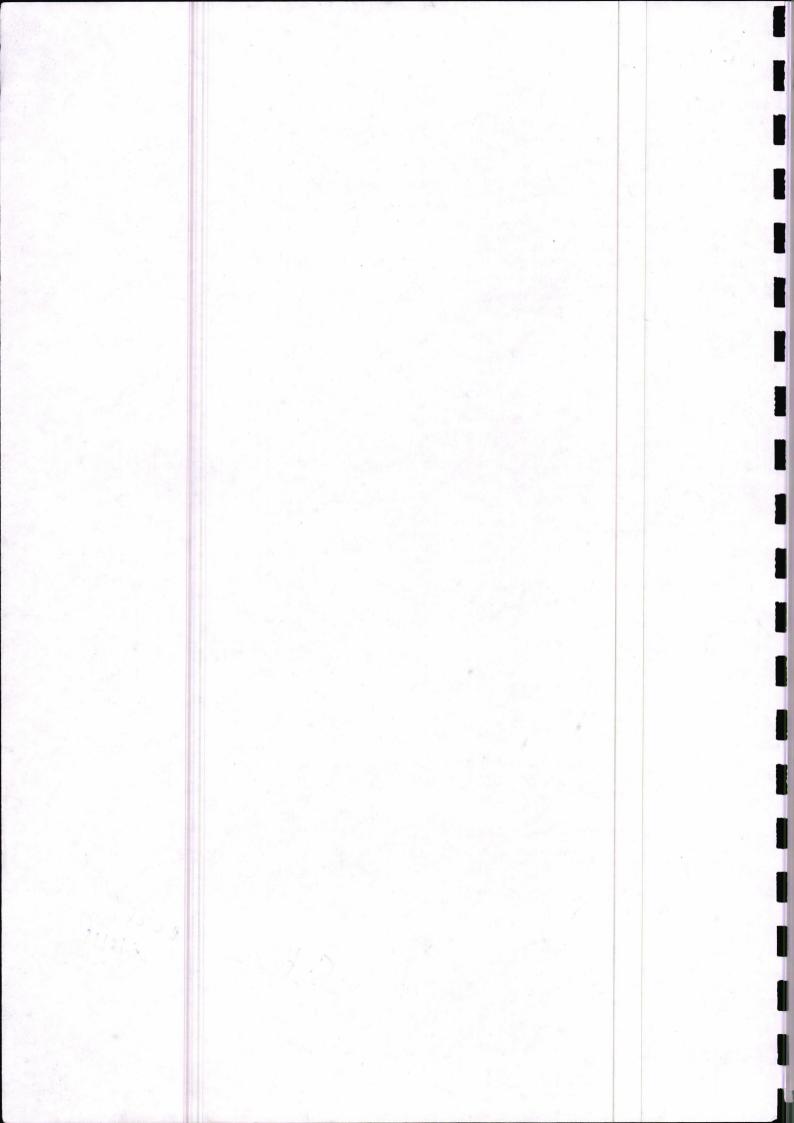
					Nam	e of	fthe	e Fa	acu	Ity :	: Fa	acu	Ity o	of S	scie	enc	e							1		1.2.1	
			Na	me of th	e Pro	grai	m :	M. 3	Sc.	(Ma	ath	ema	atic	s) :	SE	SSI	ION	1:2	201	9-2	0						
										The	ory	Prac	tical/	Diss	ertat	ion			Inte	rnal			0	ral			
Sr. No.	Semester/ Year	Course Code	Nomenclature	Theory/ Practical	Core/ AECC/ SEC/ DSE/ GE	Lecture	Tutorial	Practical	Credits	Мах	Pass	Experimental Performance	Viva-voce	Lab Work / Dissertation Report	Max	Pass	Attendance	Midterm/ Internal Viva-Voice	Assignment	Project/Seminar	Max	Pass	Мах	Pass	Overall Pass Marks	Whether to be offered under CBCS (Yes/No)	Scheme of Examinations (Theory +Internal+ Practical+Oral Theory+Internal +Practical/ Theory+Practical
1	2 1 1 1	17070101	Real Analysis	Theory	Core	4		1	4	60	24		-	-				20	5	10	40	16		1	40	NO	Theory+Internal
2	52 3		Abstract Algebra	Theory	Core	4			4	60								20	5	10	40	16		100	40	NO	Theory+Internal
3			Ordinary Differential Equation	Theory	Core	4			4	60							5	20	5	10	40			1.5	40	NO	Theory+Internal
4			Ordinary Differential Equation Lab	Practical	Core			4	2			18	9	3	30	12	5	10		5	20	8		1.00	20	NO	Practical+Internal
5	1/1		Probability & Mathematical Statistics	Theory	Core	4			4	60	24						5	20	5	10	40	16			50	NO	Theory+Internal
6			Probability & Mathematical Statistics Lab	Practical	Core			4	2			18	9	3	30	12	5	10			20		1100	100	20	NO	Practical+Internal
7			Professional Ethics and Human Values	Theory	SEC	2			2	30	12					1	5	10	5	0	20	8			20	NO	Theory+Internal
8			Basics of Matric Space	Theory	SEC	2			2	30							5	10		0	20				20	NO	Theory+Internal
-						-			-													1 10					
9		17070201	Complex Analysis	Theory	Core	4			4	60	24						5	20	5	10	40	16	1		40	NO	Theory+Internal
10			Measure Theory	Theory	Core	4			4		24						5	20	5	10		16		1	40	NO	Theory+Internal
11			Partial Differential Equation	Theory	Core	4			4	60		-					5	20		10	40	16			40	NO	Theory+Internal
12		17070204		Practical	Core	1		4	2			18	9	3	30	12	5	10	inter a	5	20	8	N. QU	100	20	NO	Practical+Internal
13	11/1	17070205		Theory	Core	4			4	60	24						5	20	5	10	40	16	1		40	NO	Theory+Internal
14			Operational Research Lab	Practical	Core			4	2			18	9	3	30	12	5	10		5	20	8		199	20	NO	Practical+Internal
15		17070207	General Relativity & Cosmology	Theory	SEC	4			4	60	24						5	20	5	10	40	16	1.1.1		40	NO	Theory+Internal
16			Fuzzy Sets and its Application	Theory	SEC	4			4	60	24						5	20	5	10	40	16			40	NO	Theory+Internal
									1				1									1.5		100			E.
17		17070301	Linear Algebra	Theory	Core	4			4	60	24						5	20	5		40				40	NO	Theory+Internal
18	12	17070302	Topology	Theory	Core	4			4		24					1	5	20	5	10	40				40	NO	Theory+Internal
19		17070303	Statistical Inference	Theory	Core	4			4	60	24			100			5	20	5	10	40	16			40	NO	Theory+Internal
20	í	17070304	Statistical Inference Lab	Practical	Core	1		4	2			18	9	3	30	12	5	10		5	20	8			20	NO	Practical+Internal
21	111 / 11	17070305	Numerical Anslysis and application	Theory	Core	4			4	60	24						5	20	5	10	40	16			40	NO	Theory+Internal
22		17070306	Numerical Anslysis and Application Lab	Practical	SEC			4	2			18	9	3	30	12	5	10		5	20	8			20	NO	Practical+Internal
23	1. S. S. S. S.	17070307	Differential Geometry	Theory	SEC	2			2		12						5	10		0	20	8			20	NO	Theory+Internal
24		17070308	Discrete Mathematics and Automata	Theory	DSE	4			4		24						5	20		10	40	16		20	40	NO	Theory+Internal
25		17070309	Integral Equation and and Calculus of Variation	Theory	DSE	4			4	60	24						5	20	5	10	40	16			40	NO	Theory+Internal
20		17070404	Provident Andreis	Theory	Cara	1			-	60	24			-	-		E	20	5	10	40	16		-	40	NO	Theory+Internal
26			Functional Analysis	Theory	Core	4	-		4		24			-	-						40		-	-	40	NO	Theory+Internal
27			Number Theory	Theory	Core	4	-		4	60		-				-		20	5	10			-		40	NO	Theory+Internal
28	1.1.1		Mathematical Programming and Application	Theory	Core	4	-	10	4	60	24	-	15	15	00	20		20	5	10	40		C. Sections	1000		NO	Practical+Internal
29	IV / II	17070404	Project	Practical	Core			12	6		-		45	45	90	36	15		-		60			1.3	60		
30			Stochastic Process & its Application	Theory	DSE	4	-		4	60		-		-	-			20	5	10	40		-	-	40	NO	Theory+Internal
31			Artificial Intelligence with Deep Learning	Theory	DSE	4	-		4		24				-			20		10	40		-	-	40	NO	Theory+Internal
32			Graph Theory	Theory	DSE	4			4		24				-			20	5	10	40			-	40	NO	Theory+Internal
33		17070408	Cryptography	Theory	DSE	4			4	60	24						5	20	5	10	40	16			40	NO	Theory+Internal


Department of Mathematics

M.Sc. (Mathematics)

Course Structure under Choice Based Credit System (CBCS): 2019-20

SEMESTER	COURSEC	COURSENAME	I		r I	Contact hours/wook	Credits	Max. Marke	Formative	Summative
		Core Courses (CC)		-		-			1	
	17070101	Real Analysis	4	0	0	4	4	100	40	60
	17070102	Abstract Algebra	4	0	0	4	4	100	-	60
	17070103	Ordinary Differential Equation	4	0	0	4	4			60
Ι	17070104	Ordinary Differential Equation Lab	0	0	4	4	2	50		
	17070105	Probability & Mathematical Statistics	4	0	0		4	100	20 40	30 60
	17070106	Probability & Mathematical Statistics Lab	0	0	4	1	2	50	20	30
		Skill Enhancement Course (SEC)						<u> </u>		
-	17070107	Professional Ethics and Human Values	2	0	0	2	2	50	20	30
	17070108	Basics of Matric Space	2	0	0	2	2	50	20	30
	Total Credits		20	0	8	28	24	600	240	360
		Core Courses(CC)					24	000	240	300
	17070201	Complex Analysis	4	0	0	4	4	100	40	60
	17070202	Measure Theory	4	0	0	4	4	100	40	60
	17070203	Partial Differential Equation	4	0	0	4	4	100	40	60
**	17070204	Partial Differential Equation Lab	0	0	4	4	2	50	20	30
Π	17070205	Operational Research	4	0	0	4	4	100	40	60
	17070206	Operational Research Lab	0	0	4	4	2	50	20	30
	Skill Enharceme	ent Course (SEC)(Choose any one of the fol	lowin	ıg)						
-	17070207	General Relativity & Cosmology	4	0	0	4	4	100	40	60
	17070208	Fuzzy Sets and its Application	4	0	0	4	4	100	40	60
	Total Credits		20	0	8	28	24	600	240	360
	17070301	Core Courses(CC)					• *			000
	170/9302	Linear Algebra	4	0	0	4	4	100	40	60
1	17070303	Topology	4	0	0	4	4	100	40	60
	17070303	Statistical Inference	4	0	0	4	4	100	40	60
	1/0/0394	Statistical Inference Lab	0	0	4	4	2	50	20	30


de C. Id Nerfalling

1	and the second second	Grand Total	82	0	36	118	100	2500	1000	150
	Total Credits		20	0	12	32	26	650	260	390
1	17070408	Cryptography	4	0	0	4	4	100	40	60
	17070407	Graph Theory	4	0	0	4	4	100	40	60
	17070406	Artificial Intelligence with Deep Learning	4	0	0	4	4	100	40	60
	17070405	Stochastic Process & its Application	4	0	0	4	4	100	40	60
		Discipline Specific Elective Courses (Ch	oose a	ny t	wo of	the fo	llowin	g)		
	17070404	Project	0	0	12	12	6	150	60	9(
	17070403	Mathematical Programming and Application	4	0	0	4	4	100	40	60
	17070402	Number Theory	4	0	0	4	4	100	40	6
	17070401	Functional Analysis	4	0	0	4	4	100	40	6
		Core Courses(CC)								
	Total Credits		22	0	8	30	26	650	260	3
	17070309	Integral Equation and and Calculus of Variation	4	0	0	4	4	100	40	6
	17070308	Discrete Mathematics and Automata	4	0	0	4	4	100	40	16
		Discipline Elective Courses (Choose any	one	of the	e follo	wing)				1.
	17070307	Differential Geometry	2	0	0	2	2	50	20	3
		Skill Enhancement C	ourse	(SE	C)		_		<u> </u>	
	17070306	Numerical Analysis and Application Lab	0	0	4	4	2	50	20	3
	17070305	Numerical Analysis and application	4	0	0	4	4	100	40	1

Scheme of Studies M.Sc. (Mathematics): 2019-20

Category		Credits	%
Core Course		78	78
Discipline Specific Elective Course (DSE)	al la constante de la constante	12	12
Skill Enhancement Course (SEC)		10	12
Total Credits		100	100
			1

Syllabus M.Sc. (Mathematics) 2019-2020 Semester - I

Core Courses:

- 1. Real Analysis
- 2. Abstract Algebra
- 3. Ordinary Differential Equation
- 4. Ordinary Differential Equation Lab
- 5. Probability and Mathematical Statistics
- 6. Probability and Mathematical Statistics Lab

Skill Enhancement Course

1. Professional Ethics and Human Values

2. Basics of Matric Space

Core Courses:

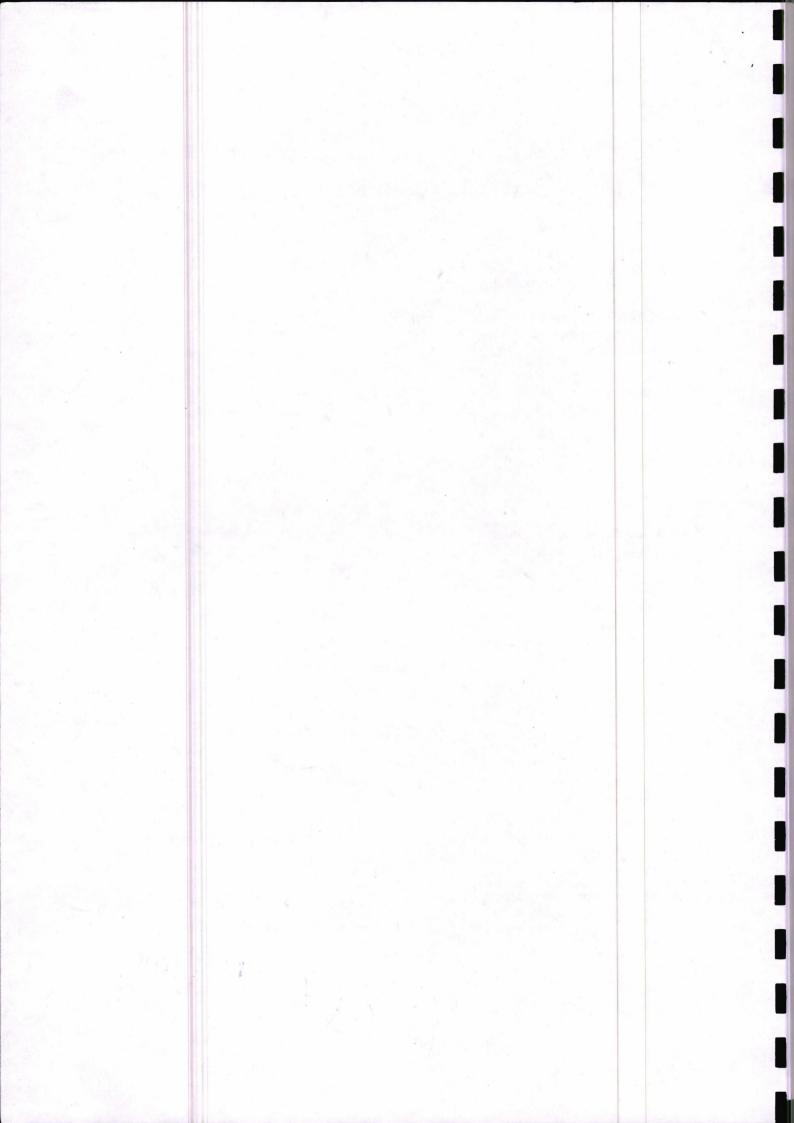
Semester - II

- 1. Complex Analysis
- 2. Measure Theory
- 3. Partial Differential Equation
- 4. Partial Differential Equation Lab
- 5. Operational Research
- 6. Operational Research Lab

Skill Enhancement Course (Choose any one of the following)

- 1. General Relativity and Cosmology
- 2. Fuzzy Sets and its Application

Semester - III


Core Courses:

- 1. Linear Algebra
- 2. Topology
- 3. Statistical Inference
- 4. Statistical Inference Lab
- 5. Numerical Analysis and Application
- 6. Numerical Analysis and Application Lab

Skill Enhancement Course (SEC)

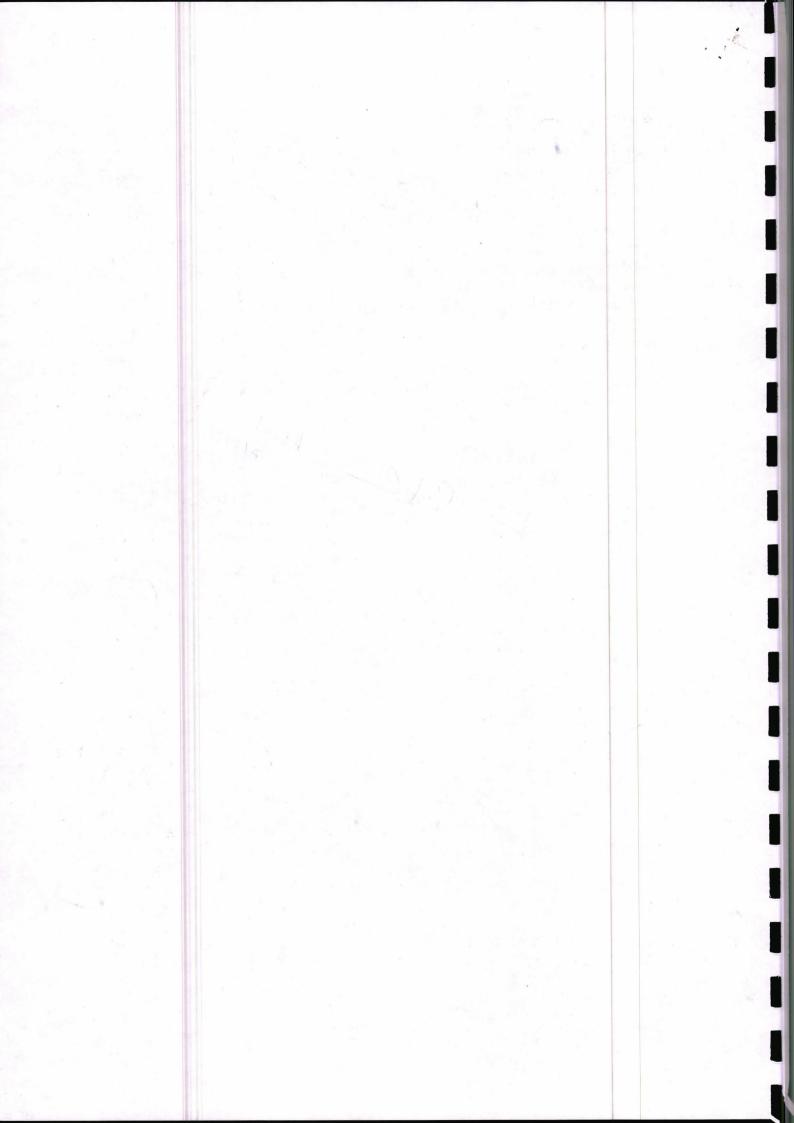
Differential Geometry

Do S. Set New Flore

Discipline Specific Elective Courses (Choose any one of the following)

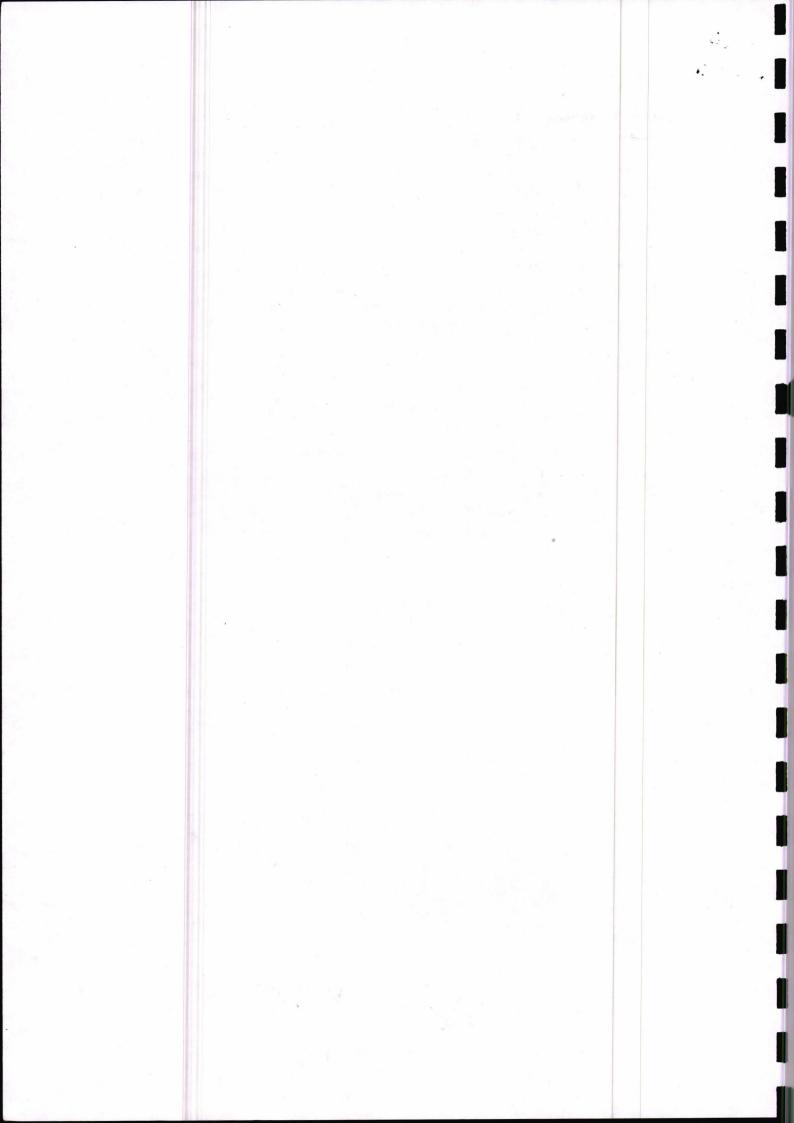
- 1. Discrete Mathematics and Automata
- 2. Integral Equation and Calculus of Variation

Semester – IV


Core Courses:

- 1. Functional Analysis
- 2. Number Theory
- 3. Mathematical Programming and Application
- 4. Project

Discipline Specific Elective Courses (Choose any two of the following)


- 1. Stochastic Process & its Applications
- 2. Artificial Intelligence with Deep Learning
- 3. Graph Theory
- 4. Cryptography

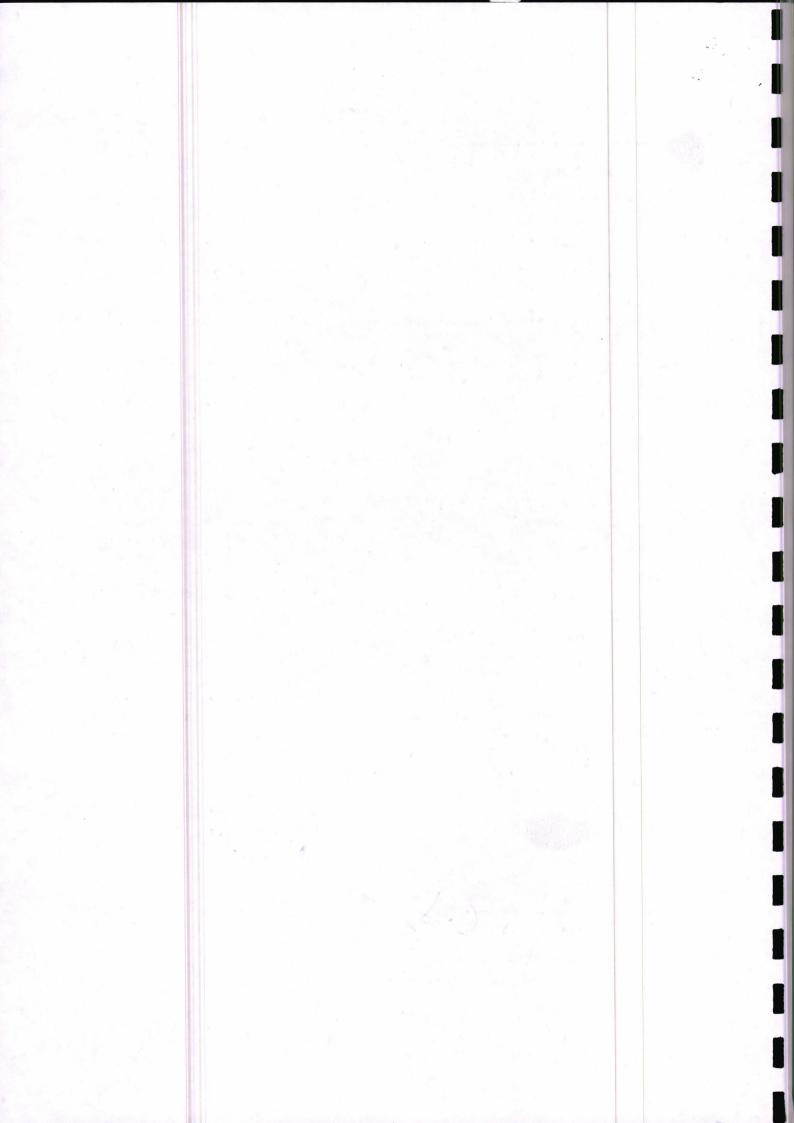
K. S. S.

1. Name of th	e Depar	tm	nt: Mathema	itics				
2. Course Na	me	Re	Analysis	L		Г	I)
3. Course Co	de	17	70101	4		0	()
4. Type of Co	urse (us	e ti	(mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE (
5. Pre-requisi (if any)	ite			6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem(
7. Total Num	ber of L	ect	es, Tutorial	s, Practical				
Lectures $= 50$			1 and	Tutorials = 0	Pract	ical = 0	1. 1. 19	
8. Course Des	scription	1:						
This course cov taught Riemann functions of sev	n Stieltje	es		vics of mathematical ana orm convergence of se				
9. Course Ob	jectives	:						
The objective of Riemann Stieltj several variable	es integr	ral,	niform conv	duce some fundamenta ergence of sequences a nt in some other papers	nd series o	f functions,	and func	tions of
10. Course Ou	tcomes (CO	:					
1. Students in	this cou	rse	ill demonstr	ate ability to work with	Riemann S	tielties inter	oral	
 Students in Students in 				solve problems based of		-		
	this cou			now about sequence and				
4. in this cour	se will c	ome s, ga	to know about mma function	ut some basic concepts on setc.	of mathema	tical analys	is like pov	ver
11. Unit wise d		-						
			ctures = 10	Title of the unit: Ri	emann Stie	eltjes Integ	ral	
Stieltjes integra fundamental the Riemann Stieltjo	l to ordi corem of es integra	inary inte als, i	Riemann in gral calculus, itegration of	eltjes integral, propertie tegral, change of varia integration by parts, fin vector-valued functions	ble, integra rst and seco	ation and d ond mean v	ifferentiat alue theor	ion, th ems fo
Unit – 2	Number	ofk	ctures = 15	Title of the unit: Se	quences an	d Series of	Functior	IS
convergence, U uniform conver Weierstrass M-	Iniform gence an test, Abl	conv nd di les t	vergence and fferentiation, est, integrati	of sequences of fund continuity, uniform of convergence and unifor on and differentiation n, the Weierstrass appro	onvergence orm convergence of series of	e and Rien gence of se of function	nann interries of fu	gration
Unit – 3	Number	ofle	ectures = 15	Title of the unit: Fu	nctions of	several var	iables	
as a metric spac directional deriv mapping to be o	e, open s vatives, o continuo	sets, conti usly	continuity, de nuously diffe differentiable	unsformations, the space erivative in an open sub erentiable mappings, ne e, contractions, the cont function theorem.	e of linear t set of R _n , c cessary and	transformati hain rule, p d sufficient	ons on R, artial deri condition	vatives as for
		1000	ectures = 10	Title of the unit: Po	wer Series			
				power series, Abel's an			Cavlor's t	leoren
	quell		101	to the berros, riber s all		theorem,	ayior 5 th	icorell

de C. S. Lat New grann

Exponential & Logarithmic functions, trigonometric functions, Fourier series, Gamma function. 12. Brief Description of self learning / E-learning component

https://youtu.be/LUKfrjpDHTk


https://youtu.be/2iXpgCdQDuM

https://youtu.be/ZZUYzTsBk-0

13. Books Recommended

- 1. Principles of Mathematical Analysis' by Walter Rudin (3rd Edition) McGraw-Hill, 1976
- 2. T.M. Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.
- 3. S.C. Malik and SavitaArora, Mathematical Analysis, New Age International Limited, New Delhi,4th Edition 2010.
- 4. D. Somasundaram and B. Choudhary : A First Course in Mathematical Analysis, Narosa Publishing House, New Delhi, 1997.
- 5. Gabriel Klambauer, Mathematical Analysis, Marcel Dekkar, Inc. New York, 1975.

De C. S.

	Abstract Algebra	L		Т		Р	
2. Course Name 3. Course Code	17070102	4		0			
			DODO			0	
	se (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()	
		6. Frequency	Even ()	Odd (✓)	Either	Every	
(if any)		(use tick			Sem ()	Sem ()	
7. Total Numbe	r of Lectures, Tutoria	marks)			a light in		
Lectures = 50	f of Lectures, Tutoria	Tutorials = 0		D. (1 1 0			
8. Course Descr	intion:	Tutoriais = 0	Tutorials = 0 Practical = 0				
			S. A. margan				
his Course cover	s properties of integer	sets, group, permu	tation grou	p homomorph	ism and iso	mornhier	
f groups .In this c	ourse also discuss the	nilpotent group fie	eld theory	finite field	isin and isu	morphis	
		potent Broup ,in	, a theory	mile nelu			
D. Course Obje		and the state of the					
This course aims r	rovide a approach to t	he subject of Algo	hro which	is one of the 1		C 1	
Action at TI	rovide a approach to t	the subject of Alge	ora, which	is one of the t	basic pillar	of moder	
viathematics. 1 mi	s course gives to a	student a good r	nathematic	al maturity a	nd enables	to buil	
nathematical think	ing and skill.						
10 Course Outco	mos (COs):						
0. Course Outco	mes (COs):						
		eir problem of niln	otent grou	n field theory	and finite		
The Students shou	ld be able to solve the	eir problem of nilp	otent grou	p, field theory	and finite	field Th	
The Students shou tudents will demo	ld be able to solve the nstrate understanding	of the importance	of algebrai	p, field theory	and finite	field Th	
The Students shou tudents will demo	ld be able to solve the	of the importance	of algebrai	p, field theory	and finite They should	field Th	
The Students shou students will demo skills of abstract al	ld be able to solve the nstrate understanding gebra to solving differ	of the importance	of algebrai	p, field theory ic properties.	and finite They should	field Th	
The Students shou students will demo skills of abstract al 11. Unit wise deta	ld be able to solve the nstrate understanding gebra to solving differ iled content	of the importance ent types of proble	of algebrai ms	ic properties.	and finite They should	field Th	
The Students shou students will demo skills of abstract al 11. Unit wise deta Unit-1 Num	ld be able to solve the nstrate understanding gebra to solving differ iled content ber of lectures = 15	of the importance ent types of probles Groups& Nor	of algebrai ms mal subg r	oups	They should	field. Th d use thei	
The Students shou students will demo skills of abstract al 1. Unit wise deta Unit-1 Num Groups, symmetri	ld be able to solve the nstrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys	of the importance ent types of proble Groups& Nor theorem, Normal	of algebrai ms mal subgrour	roups	They should	field. Th d use the	
The Students shou students will demo skills of abstract al 11. Unit wise deta Unit-1 Num Groups, symmetri groups, Fundamen	Id be able to solve the nstrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys tal theorem on homo	of the importance ent types of proble Groups& Nor theorem, Normal morphisms, Class	of algebrai ms mal subgr subgroup	oups	a group,	field. Th d use thei	
The Students shou students will demo skills of abstract al 11. Unit wise deta Unit-1 Num Groups, symmetri groups, Fundamen	Id be able to solve the nstrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys tal theorem on homo	of the importance ent types of proble Groups& Nor theorem, Normal morphisms, Class	of algebrai ms mal subgr subgroup	oups	a group,	field. Th d use thei	
The Students shou students will demo skills of abstract al 11. Unit wise deta Unit-1 Num Groups, symmetri groups, Fundamen abelian and non ab	Id be able to solve the nstrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys tal theorem on homo elian groups, Sylow's T	of the importance ent types of proble Groups& Nor theorem, Normal morphisms, Class Theorems for abelia	of algebrai ms mal subgr subgroup equation an and non	oups	a group,	field. Th d use thei	
The Students shoustudents will demoskills of abstract al11. Unit wise detaUnit-1NumGroups, symmetrigroups, Fundamenabelian and non abUnit – 2Num	Id be able to solve the instrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys tal theorem on homo elian groups, Sylow's 5 ber of lectures = 15	of the importance ent types of probles Groups& Nor theorem, Normal morphisms, Class Theorems for abelia Solvable Grou	of algebrai ms mal subgroup subgroup equation an and non up	roups os, center of of groups, Ca abelian group	a group, uchys Theo s.	field. Th d use the d use the dust the dust the	
The Students shou students will demo skills of abstract al 11. Unit wise deta Unit-1 Num Groups, symmetri groups, Fundamen abelian and non abe Unit – 2 Num Maximal groups,	Id be able to solve the nstrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys tal theorem on homo elian groups, Sylow's ber of lectures = 15 c composition Series	of the importance ent types of probles Groups& Nor theorem, Normal morphisms, Class Theorems for abelia Solvable Grou of a group, Ju	of algebrai ms mal subgroup equation an and non p ordan Ho	roups roups os, center of of groups, Ca abelian group	a group, uchys Theo s.	field. Th d use the d use the dust the dust the	
The Students shou students will demo skills of abstract al 11. Unit wise deta Unit-1 Num Groups, symmetri groups, Fundamen abelian and non ab Unit – 2 Num Maximal groups,	Id be able to solve the nstrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys tal theorem on homo elian groups, Sylow's ber of lectures = 15 c composition Series	of the importance ent types of probles Groups& Nor theorem, Normal morphisms, Class Theorems for abelia Solvable Grou of a group, Ju	of algebrai ms mal subgroup equation an and non p ordan Ho	roups roups os, center of of groups, Ca abelian group	a group, uchys Theo s.	field. Th d use the d use the dust the dust the	
students will demo skills of abstract al 11. Unit wise deta Unit-1 Num Groups, symmetri groups, Fundamen abelian and non abe Unit - 2 Num Maximal groups, di	Id be able to solve the instrate understanding gebra to solving differ iled content ber of lectures = 15 c groups, Cayleys tal theorem on homo elian groups, Sylow's 5 ber of lectures = 15	of the importance ent types of probles Groups& Nor theorem, Normal morphisms, Class Theorems for abelia Solvable Grou of a group, Ju	of algebrai ms mal subgroup equation an and non p ordan Ho	roups roups os, center of of groups, Ca abelian group	a group, uchys Theo s.	field. Th d use thei quotien orems fo	

Rings, homomorphism of rings, ideals, maximal ideals, quotient rings, Integral Domains, Fields, Euclidean domains, PID, UFD, Polynomial rings, polynomial over the rational fields, Gauss lemma, Eisenstein criterion.

Unit – 4 Number of lectures = 10 Modules

Modules, Definition and examples, Direct sum, Free modules, Quotient modules, Simple modules, Modules over Principle ideal domains, Modules with chain conditions, Artenian Modules, Noetherian Modules, Hilberts basis theorem.

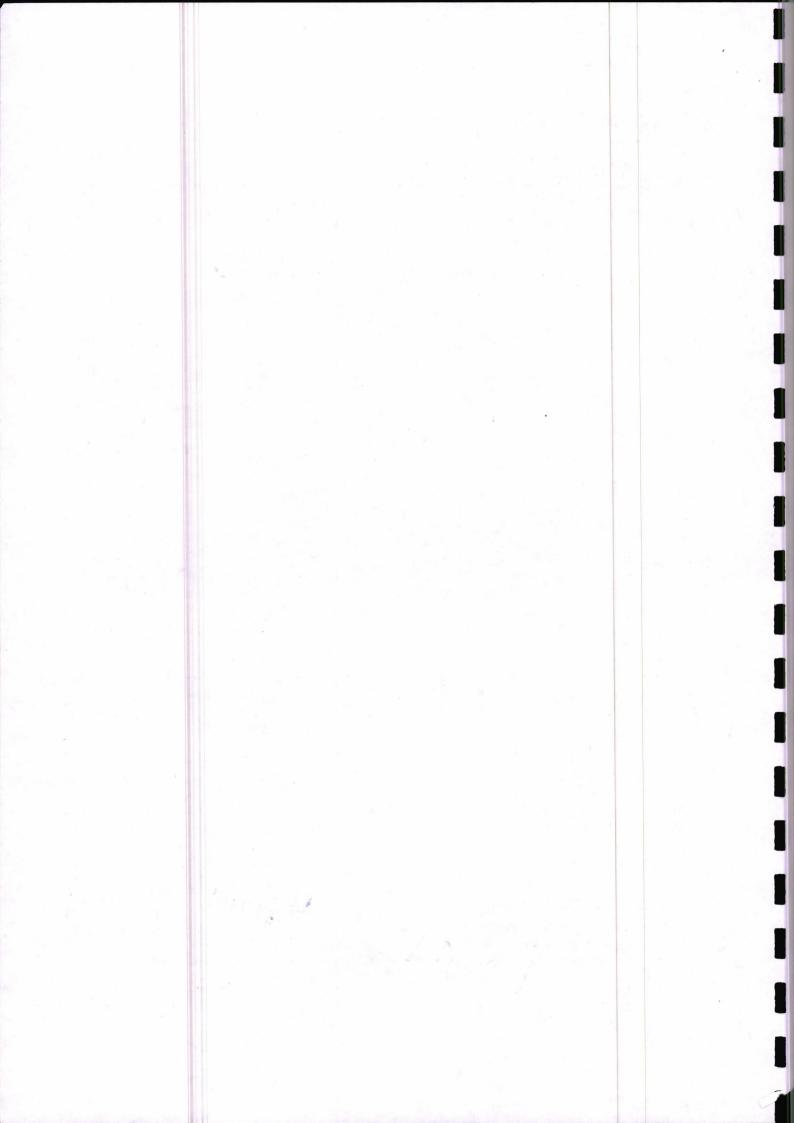
do S. S.

Nen 2/6/19


12. Brief Description of self-learning / E-learning component

https://www.youtube.com/watch?v=g7L_r6zw4-c

https://www.youtube.com/watch?v=GJtNLiG4Hv8


https://www.youtube.com/watch?v=DSxOCdpmeBI

13. Books Recommended

- 1. I.N.Herstein, I.N. Topics in Algebra, Wiley Eastern Ltd., New Delhi, 1975.
- 2. P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul. Basic Abstract Algebra. 2nd ed. Cambridge University Press, Indian Edition, 1997.
- 3. P.M. Cohn. Algebra. Vols. I, II & III. John Wiley, 1991.
- 4. N. Jacobson. Basic Algebra. Vol. I &II.Hindustan Publishing Company.
- 5. S. Lang. Algebra. 3rd ed. Addison-Wesley, 1993.
- 6. I.S. Luther and I.B.S.Passi. Algebra. Vol. I II. NarosaPublishing House, 1990; 1996.
- D.S. Malik, J.N. Mordenson, and M.K. Sen. Fundamentals of Abstract Algebra. International ed. McGraw-Hill, 1997.
- 8. VivekSahaiandVikasBist. Algebra. Narosa Publishing House, 1999

the C.S. S.

		partment: Mathematic				100		
2.	Course Name	Ordinary Differential	L		,	Г		Р
-		Equations (ODEs)		194	i inter		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
3.	Course Code	17070103	4			0		0
4.	Type of Course	(use tick mark)	Core (✓)	DSE	E ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite		6. Frequency	Even	n ()	Odd (✓)	Either	Every
	(if any)		(use tick marks)		v		Sem ()	Sem ()
7.	Total Number	of Lectures, Tutorials,	Practical				Alter generation	1.200
Le	ctures = 50		Tutorials = 0		Prac	ctical = 0		
8.	Course Descrip	tion:						

Linear differential equations of nth order, fundamental sets of solutions, Wronskian, adjoint – self adjoint linear operator, Green's formula, Adjoint equations, the nth order non-homogeneous linear equations- Variation of parameters, Fundamental existence and uniqueness theorem, Sturm-Liouville problems- Orthogonality of eigenfunctions, Power series solution of linear differential equations, matrix method, Linear and Non-linear autonomous system of equations - Phase plane - Critical points – stability.

9. Course Objectives:

The general purpose of this course is to provide an understanding of basic and advanced methods for solving differential equations.

10. Course Outcomes (COs):

Differential equations play an important role in modelling virtually every physical, technical, or biological process, from celestial motion, to bridge design, to interactions between neurons. This course provides an introduction to methods for solving and analysing ordinary differential equations.

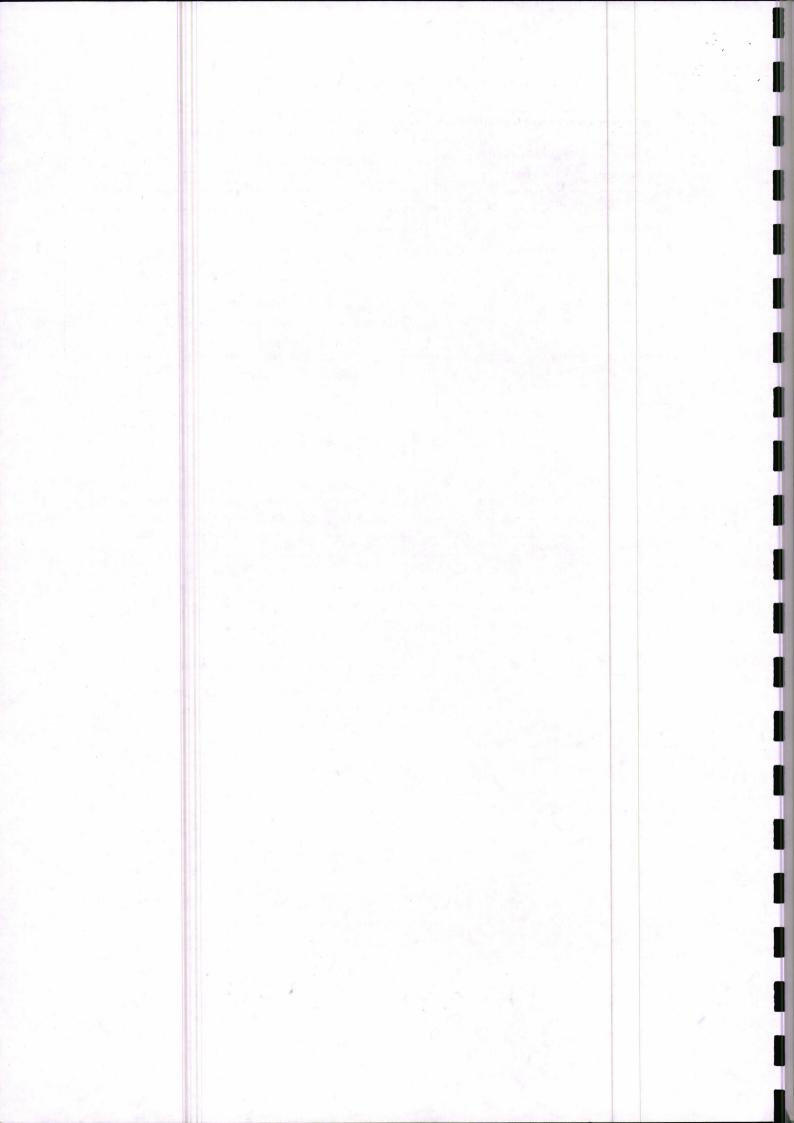
11. Unit wise detailed content

Unit-1 Number of lectures = 15 Linear differential equations: Basic

Linear differential equations of nth order, fundamental sets of solutions, Wronskian –Abel's identity, theorems on linear dependence of solutions, adjoint – self - adjoint linear operator, Green's formula, Adjoint equations, the nth order non-homogeneous linear equations- Variation of parameters - zeros of solutions – comparison and separation theorems.

Unit - 2 Number of lectures = 10 Title of the unit: Existence- Uniqueness of solutions for ODEs

Fundamental existence and uniqueness theorem. Dependence of solutions on initial conditions, existence and uniqueness theorem for higher order and system of differential equations – Eigenvalue problems – Sturm-Liouville problems- Orthogonality of eigenfunctions - Eigenfunction expansion in a series of orthonormal functions- Green's function method.

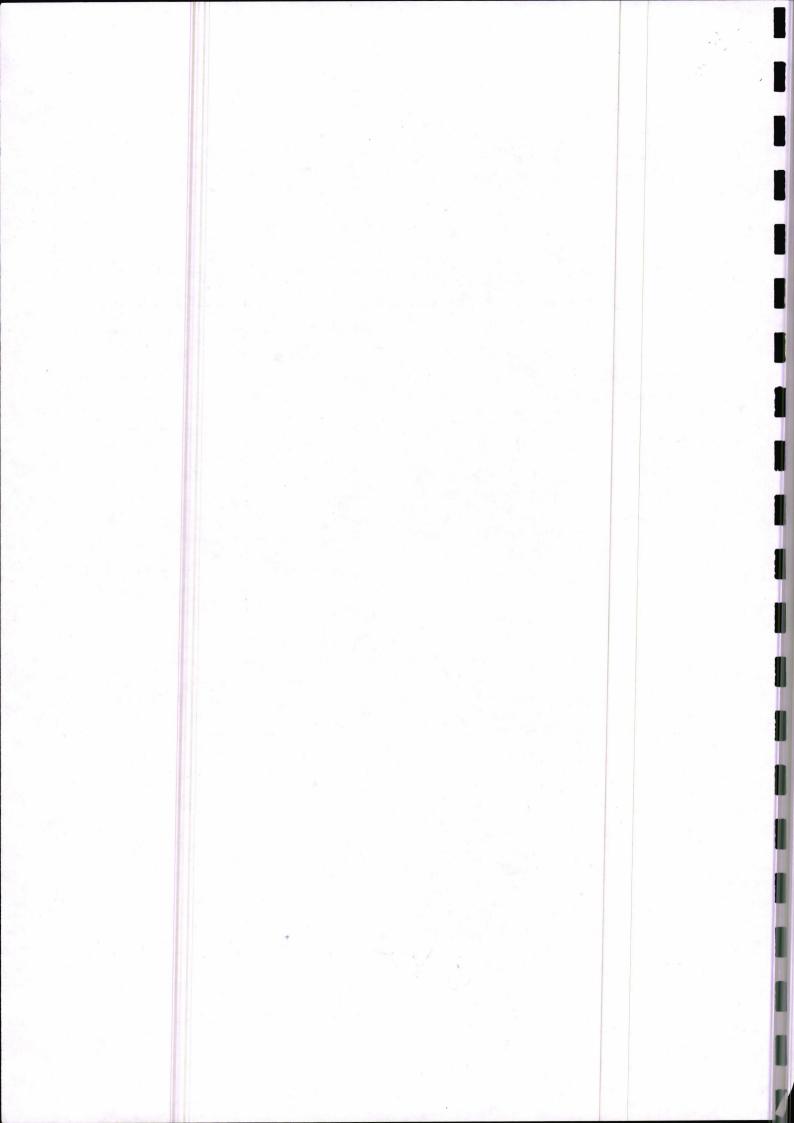

Unit – 3 Number of lectures = 15 Title of the unit: Series Solution of ODEs

Power series solution of linear differential equations- ordinary and singular points of differential equations, Classification into regular and irregular singular points; Series solution about an ordinary point and a regular singular point – Frobenius method- Hermite, Laguerre, Chebyshev and Gauss Hypergeometric equations and their general solutions. Generating function, Recurrence relations, Rodrigue's formula-Orthogonality properties. Behaviour of solution at irregular singular points and the point at infinity.

Unit – 4 Number of lectures = 10 Title of the unit: Matrix Method for ODEs & Stability Analysis

Linear system of homogeneous and non-homogeneous equations (matrix method) Linear and Non-linear autonomous system of equations - Phase plane - Critical points - stability - Liapunov direct method

to C. Del major

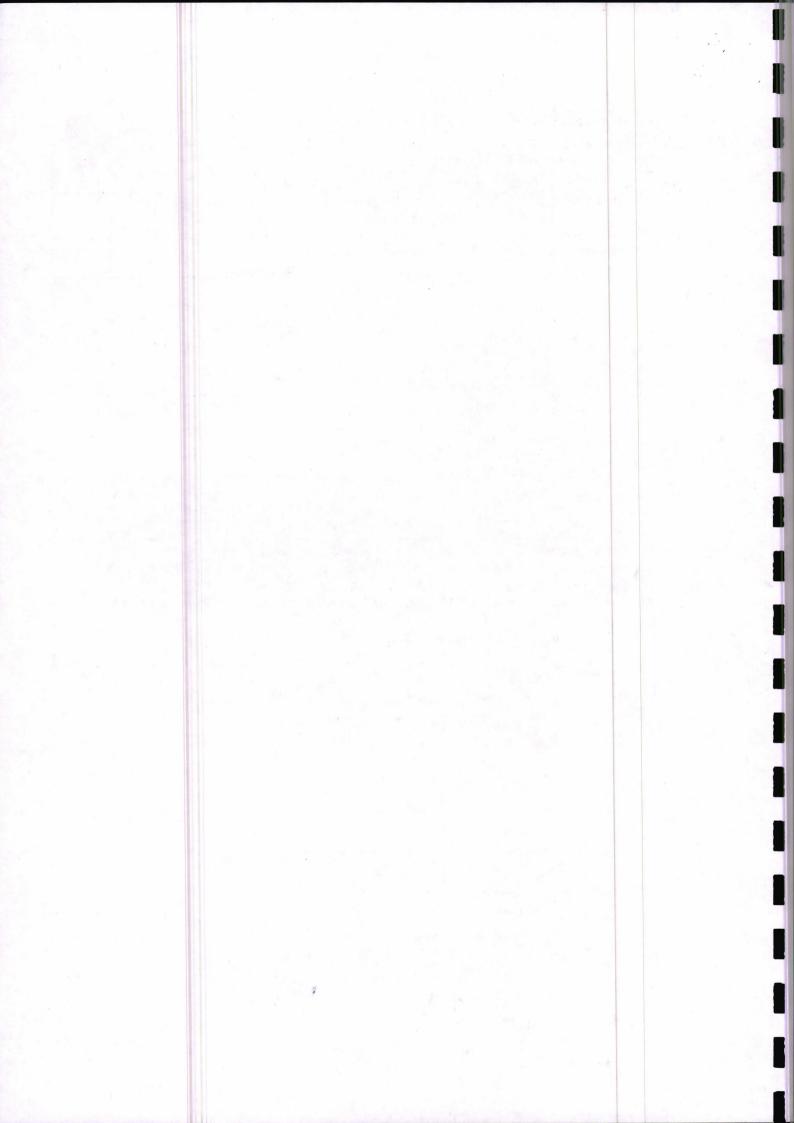

12. Brief Description of self learning / E-learning component

http://nptel.ac.in/courses/111108081/

https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/

- 1. G.F. Simmons: Differential Equations, TMH Edition, New Delhi, 1974.
- 2. M.S.P. Eastham: Theory of ordinary differential equations, Van Nostrand, London, 1970.
- 3. S.L. Ross: Differential equations (3rd edition), John Wiley & Sons, NewYork, 1984.
- 4. E.D. Rainville and P.E. Bedient: Elementary Differential Equations, McGraw Hill, NewYork, 1969.
- 5. E.A. Coddington and N. Levinson: Theory of ordinary differential equations, McGraw Hill, 1955.
- 6. A.C. King, J. Billingham and S.R. Otto: 'Differential equations', Cambridge University Press, 2006.

D. C. Les new flores

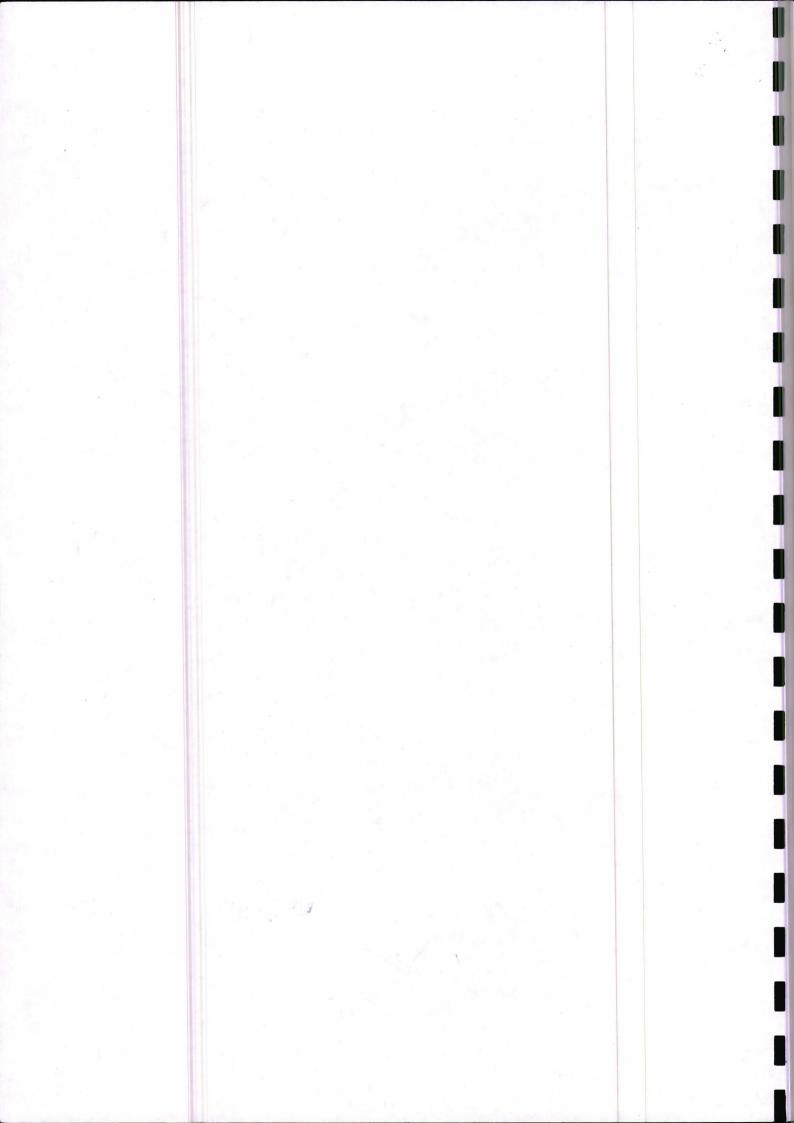

1. Mame of the De	partment: Mather	natics				
2. Course Name	Ordinary Differential Equations Lab	L		Т		Р
3. Course Code	17070104	0		0		4
4. Type of Course	(use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7. Total Number of	of Lectures, Tutor	ials, Practical	1			I
Lectures = 0		Tutorials =	0	Practical =	35	
		ots and definitions for	or differentia	l equations;		
 give an acco use methods differential e describe som for differentia use elementa 	unt of basic concepts for obtaining executions; equations; he simple numerica al equations; ary methods for line	ots and definitions for xact solutions of al solution technique ear systems of differ	linear homo	ogeneous and		
 give an acco use methods differential e describe som for differentia use elementa 	unt of basic concepts for obtaining executions; equations; he simple numerica al equations; ary methods for line	xact solutions of	linear homo	ogeneous and		
 use methods differential e describe som for differenti use elementa 10. Course Outcom 	unt of basic concepts for obtaining exercised equations; and equations; and equations; any methods for line es (COs):	xact solutions of	linear homo	ogeneous and niliar with ma	athematica	l software
 give an acco use methods differential e describe som for differentia use elementa 10. Course Outcom After compl analytically. List of Prace 	unt of basic concepts for obtaining entropy obtaining entropy of the simple numerical and equations; any methods for line es (COs): eting the course, string the course, string the course, string the course of the course of the simple set of the s	xact solutions of al solution technique ear systems of differ students are expect one from C,C++, I	linear homo es and be far rential equati ed to be ab MATLAB, M	ogeneous and niliar with ma ions. le to solve d Maple)	athematica	l software
 give an acco use methods differential e describe som for differenti use elementa 10. Course Outcom After compl analytically. List of Prac To solve diff 	unt of basic concepts for obtaining en- equations; he simple numerical al equations; ury methods for line es (COs): eting the course, s tical's (using any of ferential equation b	xact solutions of al solution technique ear systems of differ students are expect one from C,C++, N	linear homo es and be far rential equati ed to be ab MATLAB, M	ogeneous and niliar with ma ions. le to solve d Maple)	athematica	l software
 give an acco use methods differential e describe som for differenti use elementa 10. Course Outcom After compl analytically. List of Prace • To solve diff • To solve firs	unt of basic concepts for obtaining en- equations; he simple numerical al equations; ary methods for line es (COs): eting the course, s tical's (using any of ferential equation b t order Bernoulli en	xact solutions of al solution technique ear systems of differ students are expect one from C,C++, I y basic methods with quations	linear homo es and be far rential equati ed to be ab MATLAB, M	ogeneous and niliar with ma ions. le to solve d Maple) ut initial cond	athematica	l software
 give an acco use methods differential e describe som for differenti use elementa 10. Course Outcom After compl analytically. List of Prac To solve diff To solve firs To solve No 	unt of basic concepts for obtaining energy autions; and equations; and equations; any methods for line es (COs): eting the course, set tical's (using any of ferential equation b t order Bernoulli ea n-linear differential	xact solutions of al solution technique ear systems of differ students are expect one from C,C++, N y basic methods with quations l equations with init	linear homo es and be far rential equati ed to be ab MATLAB, M	ogeneous and niliar with ma ions. le to solve d Maple) ut initial cond	athematica	l software
 give an acco use methods differential e describe som for differenti use elementa 10. Course Outcom After complanalytically. List of Prace To solve diff To solve firs To solve sec 	unt of basic concepts for obtaining en- equations; he simple numerical al equations; ary methods for line es (COs): eting the course, s tical's (using any of ferential equation b t order Bernoulli ea n-linear differential ond order ODE wit	xact solutions of al solution technique ear systems of differ students are expect one from C,C++, I y basic methods with quations	linear homo es and be far rential equati ed to be ab MATLAB, M th and witho ial condition	ogeneous and niliar with ma ions. le to solve d Maple) ut initial cond	athematica	l software

• To solve Sturm-Liouville problems

Ø

• To Solve Hermite, Laguerre, Chebyshev and Gauss Hypergeometric equations

for C. J. Multera



- To find Power series solution of linear differential equations
- Solution by Euler's and modified Euler's methods of ODEs
- R.K method to solve system of ODEs.

11. Books Recommended

- 1. Gurpreet Singh Tuteja, "Practical Mathematics, International BOOK house Pvt Ltd.
- 2. https://www.mathworks.com/help/symbolic/solve-a-single-differential-equation.html
- 3. https://in.mathworks.com/help/symbolic/solve-a-system-of-differential-equations.html
- <u>https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html</u>
 <u>http://www.math.tamu.edu/undergraduate/research/REU/comp/matode.pdf</u>

We C. De &

1.	Name of the D	epartment: Mathen	natics				
2.	Course Name	Probability & Mathematical Statistics	L		Τ		Р
3.	Course Code	17070105	4		0		0
4.	Type of Course	e (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	0 Odd (√)	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tutori	als, Practical				Sec. 25
Le	ctures = 50		Tutorials = 0	2	Practical = 0		
8.	Course Descrip	otion:					

This course introduces fundamental concepts, theories and primitive applications of probability and mathematics statistics. This course develops the building blocks of probability theory that are necessary to understand statistical inference. In this course the concept of probability and their axioms are reviewed, discrete and continuous random variables are introduced, and their properties are developed in the univariate and bivariate setting. In particular, we discuss the most common probability distributions that arise in statistical applications.

Topic includes: Concept of Probability, Bayes theorem and its applications, Random variables, Mathematical expectation, Moment generating function, Chebyshev's inequality, law of large numbers, central limit theorem and some common probability distributions that arise in statistical applications etc.

9. Course Objectives:

- 1. To provide students with a good understanding of the theory of probability, both discrete and continuous, including variety of useful distributions, expectation and variance, analysis of sample statistics, and central limit theorems.
- 2. To help students develop the ability to solve problems using probability.
- 3. To introduce students to some of the basic methods of statistics and prepare them for further study in statistics.

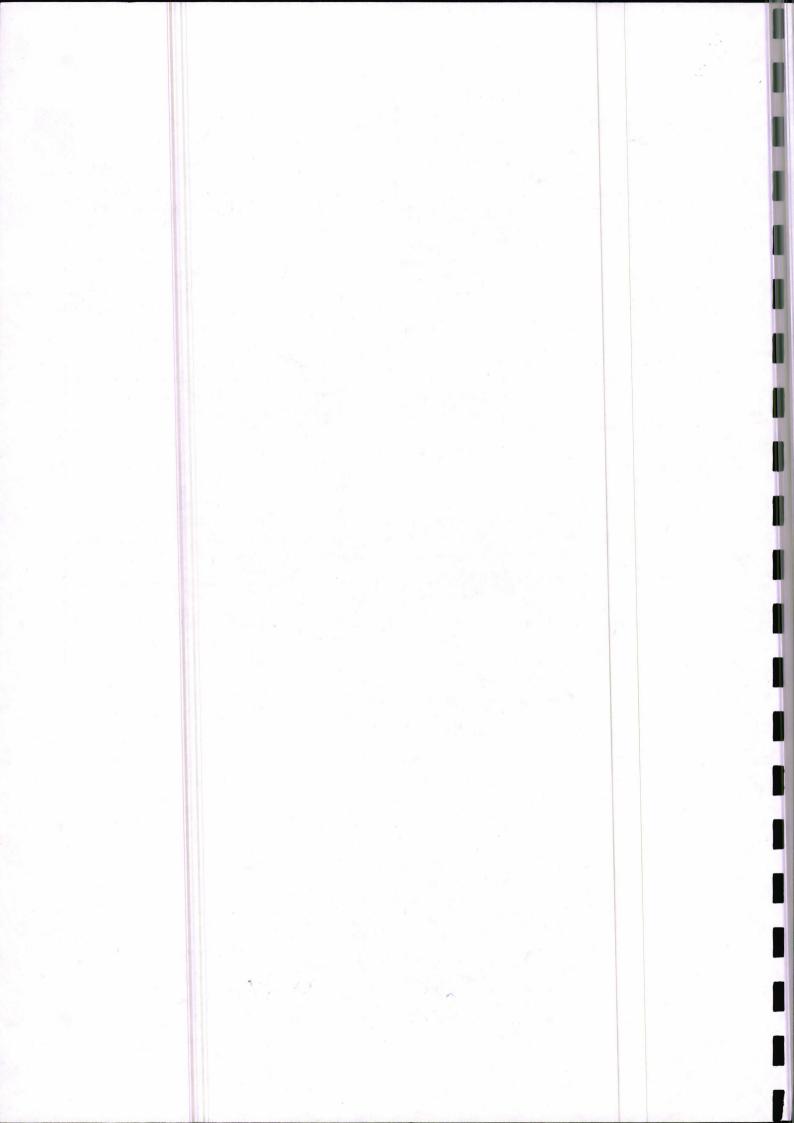
10. Course Outcomes (COs):

This course intends to help students with major in science, engineering, and other related fields to develop their computing skills of probability and mathematical statistics and advanced ability to solve practical problems with mathematics. On successful completion of this course students will be able to:

1. demonstrate knowledge of, and properties of, statistical models in common use,

2. understand the basic principles underlying statistical inference (estimation and hypothesis testing).

11. Unit wise detailed content


Unit-1 Number of lectures = 10 Tit	le of the unit: Probability
------------------------------------	------------------------------------

Probability: Definition and various approaches of probability, Addition theorem, Boole inequality, Conditional probability and multiplication theorem, Independent events, Mutual and pairwise independence of events, Bayes theorem and its applications.

Unit - 2 Number of lectures = 10 Title of the unit: Random variables and their function

pr S.S. Ju

Random variable and probability functions: Definition and properties of random variables, Discrete and continuous random variables, Probability mass and density functions, Distribution function. Mathematical

expectation: Definition and its properties. Variance, Covariance, Moment generating function-Definitions and their properties. Chebyshev's inequality, law of large numbers, central limit theorem.

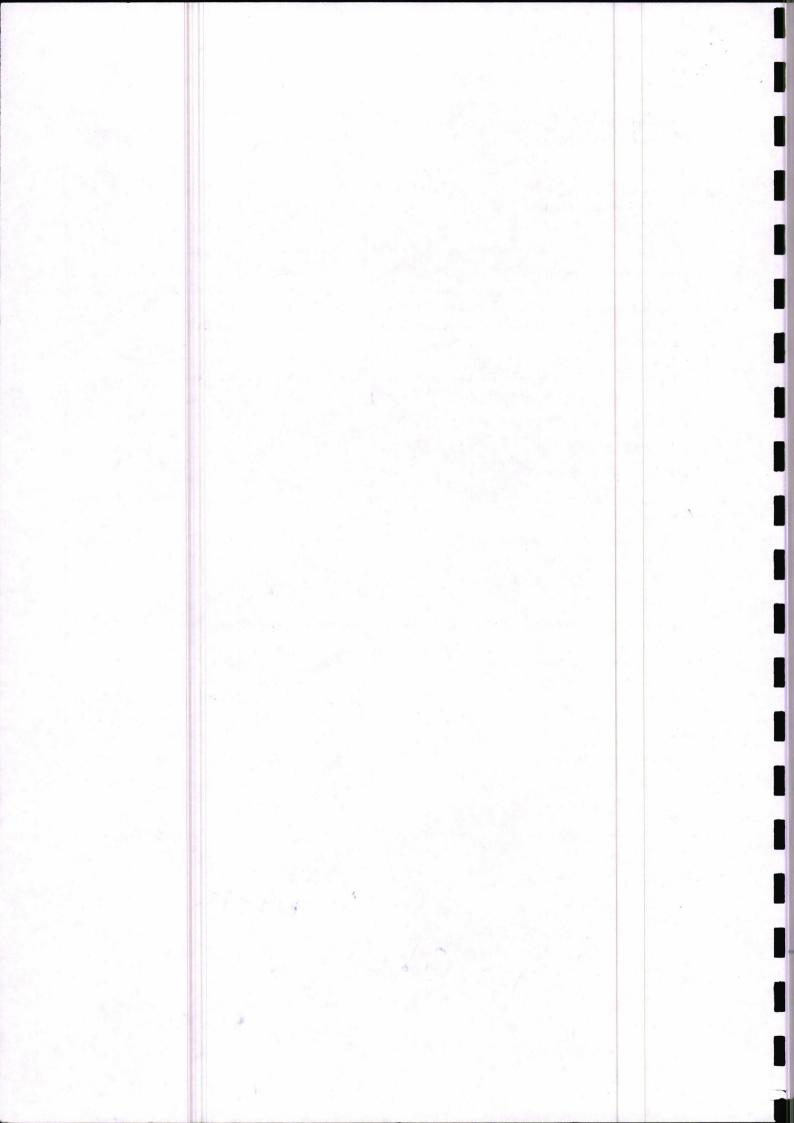
Unit - 3 Number of lectures = 15 Title of the unit: Probability distributions

Discrete distributions: Uniform, Bernoulli, Binomial, Poisson and Geometric distributions with their properties. Continuous distributions: Uniform, Exponential, Gamma, Beta and Normal distributions with their properties.

Unit - 4	Number of lectures = 15	Title of the unit: Sampling distribution and Test
		Statistics

Population, sample, parameter and statistics, Simple random sampling with replacement and without replacement, sampling distribution of statistic, standard error, Fundamental sampling distribution from normal population viz. Chi-square distribution, Student's t distribution, Snedecor's F-distribution, Fisher's - Z distribution.

12. Brief Description of self learning / E-learning component


http://nptel.ac.in/courses/111105041/1

https://www.youtube.com/watch?v=r1sLCDA-kNY

https://www.youtube.com/watch?v=9EqUH9wsM6c

- 1. R.V. Hogg and T. Craig, Introduction to Mathematical Statistics, 7th addition, Pearson Education Limited-2014
- 2. Zhou Sheng, ShiqianXie, Chengyi Pan, Probability and Mathematics Statistics, 4th Edition, Higher Education Press, 2011
- 3. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, S. Chand Pub., New Delhi, 2014
- 4. Rick Durrett, Probability: Theory and Examples, Cambridge University Press, 2010
- 5. Jun Shao, Mathematical Statistics, Springer-Verlag, 2010

De Color Surgeria

1.	Name of the De	epartment: Mathen	natics			a the second	
2.	Course Name	Probability & Mathematical Statistics Lab	L		Т		Р
3.	Course Code	17070106	0		0		4
4.	Type of Course	e (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tutori	als, Practical				
Le	ctures = 0		Tutorials = 0		Practical =35		

8. Course Description:

This course introduces fundamental concepts, theories and primitive applications of probability and mathematics statistics. This course develops the building blocks of probability theory that are necessary to understand statistical inference. In this course the concept of probability and their axioms are reviewed, discrete and continuous random variables are introduced, and their properties are developed in the univariate and bivariate setting. In particular, we discuss the most common probability distributions that arise in statistical applications.

Topic includes: Concept of Probability, Bayes theorem and its applications, Random variables, Mathematical expectation, Moment generating function, Chebyshev's inequality, law of large numbers, central limit theorem and some common probability distributions that arise in statistical applications etc.

9. Course Objectives:

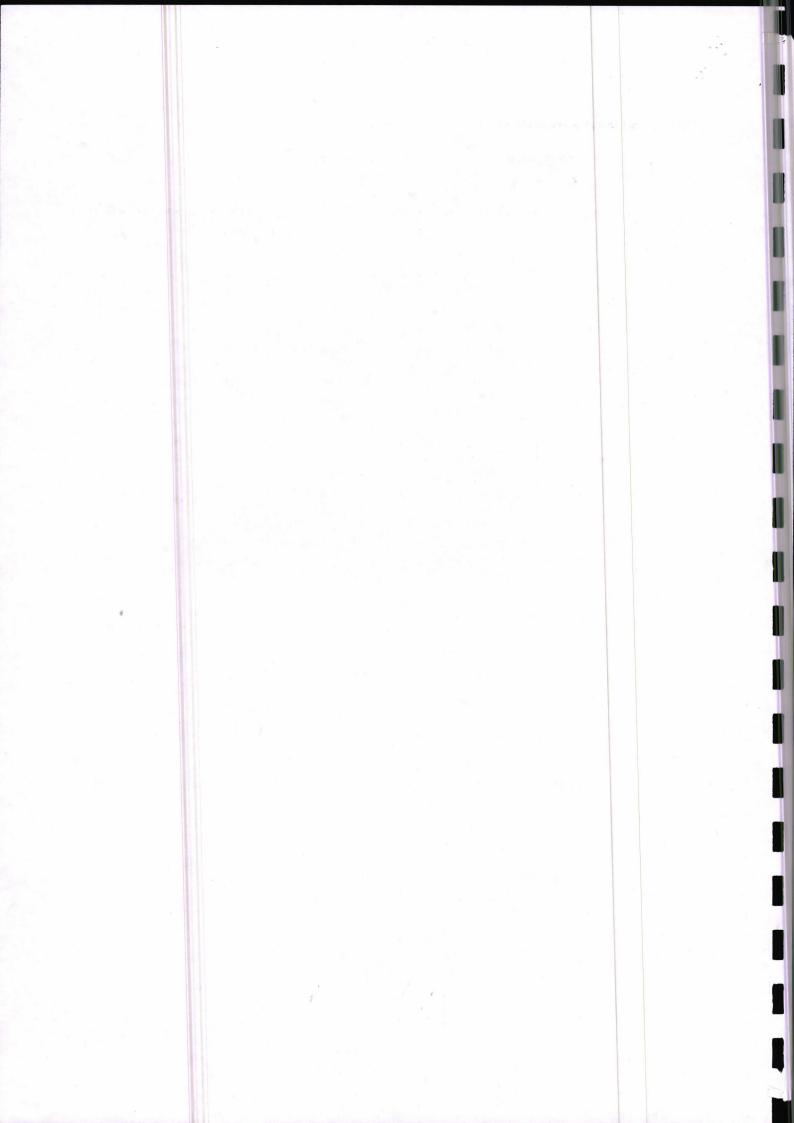
- 4. To provide students with a good understanding of the theory of probability, both discrete and continuous, including variety of useful distributions, expectation and variance, analysis of sample statistics, and central limit theorems.
- 5. To help students develop the ability to solve problems using probability.
- 6. To introduce students to some of the basic methods of statistics and prepare them for further study in statistics.

10. Course Outcomes (COs):

This course intends to help students with major in science, engineering, and other related fields to develop their computing skills of probability and mathematical statistics and advanced ability to solve practical problems with mathematics. On successful completion of this course students will be able to:

- 3. demonstrate knowledge of, and properties of, statistical models in common use,
- 4. understand the basic principles underlying statistical inference (estimation and hypothesis testing).

11. Probability & Mathematical Statistics Lab Syllabus:


Practical Based on Syllabus: Programming in "C" or Applying software packages for problems based on Theory paper Probability & Mathematical Statistics (08030105).

Use of Statistical Software packages such as MINITAB, SPSS, Statgraf etc.

Practical Exercises for Statistical techniques based on topics in paper Probability & Mathematical Statistics (08030105).

An C. S. Mutalin

Note:

1. At least eight experiments are to be performed in the semester.

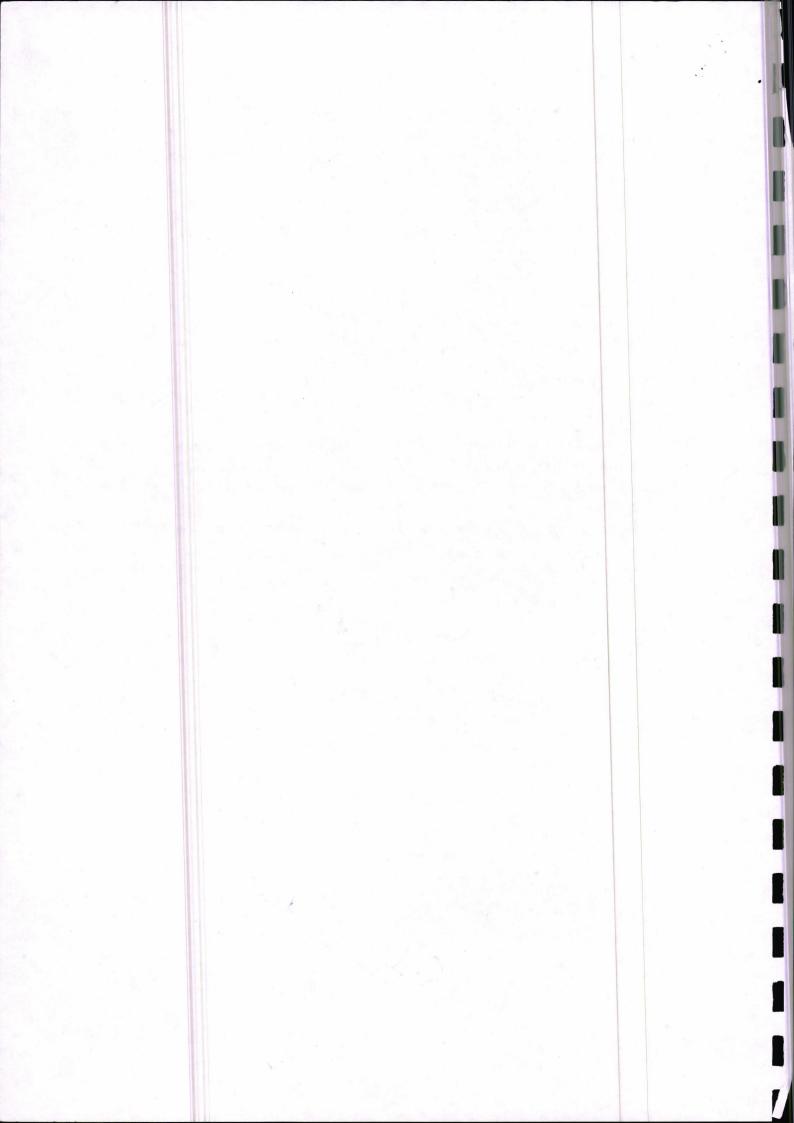
2. At least three experiments are based on Software and remaining experiments are based on conventional methods.

3. At least six experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the department as per the scope of the syllabus.

12. Brief Description of self learning / E-learning component

http://nptel.ac.in/courses/111105041/1

https://www.youtube.com/watch?v=r1sLCDA-kNY


https://www.youtube.com/watch?v=9EqUH9wsM6c

13. Books Recommended

- 6. R.V. Hogg and T. Craig, Introduction to Mathematical Statistics, 7th addition, Pearson Education Limited-2014
- Zhou Sheng, ShiqianXie, Chengyi Pan, Probability and Mathematics Statistics, 4th Edition, Higher Education Press, 2011
- 8. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, S. Chand Pub., New Delhi, 2014
- 9. Rick Durrett, Probability: Theory and Examples, Cambridge University Press, 2010

10. Jun Shao, Mathematical Statistics, Springer-Verlag, 2010

W S. S. S.

2.	Name of the Dep Course Name	Professional ethics and human value	L		T		P
3.	Course Code	17070107	2		0		
4.	Type of Course (I	use tick mark)	Core ()	DODA	0		0
5.	Pre-requisite	NA	-	DSE ()	AEC ()	SEC (1)	OE ()
	(if any)		6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Number of	Lectures, Tutorials, H	Practical		1		
Lec	ctures = 26 Course Descriptio		Tutorials = 0)	Practical	= 0	
This niste am	s course provides st ory and day to day ily .	udents with the knowl life will make the stu	edge of ethics in idents more res	n profession ponsible to	nal life. Son wards their	ne of the exa profession,	mples from society and

9. Course Objectives:

1. To develop ethical and human values in students

2. To develop the responsibility in students at professional and societal levels.

10. Course Outcomes (COs):

- 1. The students will understand the values of professional ethics and moral values deeply.
- 2. The students will be able to take strong decisions and perform their duties responsibly as on professional.

11. Unit wise detailed content

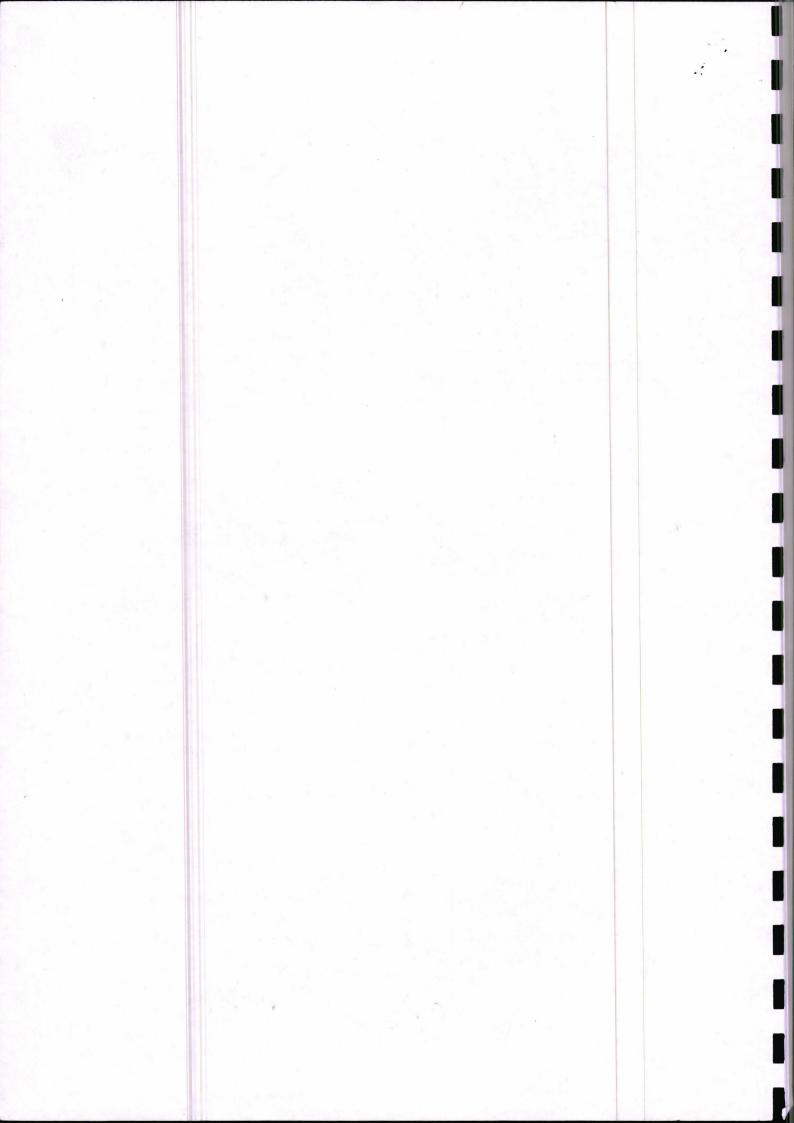
Unit-1Number of lectures = 12Title of the unit: Ethics and Human ValuesDefinition, History and Development of Ethics, Universal declaration on Bioethics, Theories
related to Bioethics: Utilitarian theory, Deontological theory and Communication theory.
Human Rights and Values : Autonomy, Consent, Equality, Confidentiality, Vulnerability and
Personal Integrity

Environmental Ethics, Animal ethics Unit -2 Number of lectures

Unit -2Number of lectures = 14Title of the unit: Professional Ethics & ResponsibilityNeed and Importance of professional ethics, Goals, Dignity of Labour, IRB & its functions,Authorship

Religious and Cultural Values, Importance of a Family, Guidance to youngsters, Gender Equality

Responsibilities towards Safety and Risk, Voluntary v/sIn voluntary Risk, Designing/Research for Safety – Risk, Benefit Analysis, Accidents.Disaster ethics,

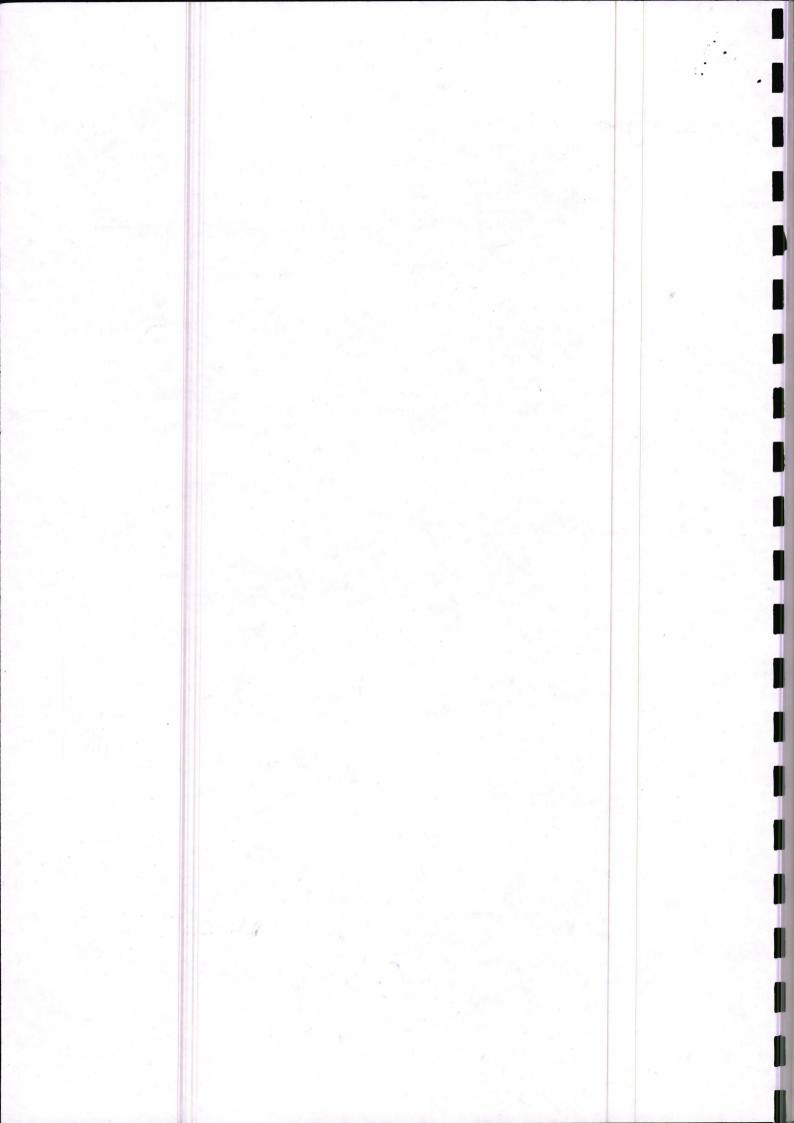

Ethics in Media and Technology, Research Ethics, Intellectual Property Rights.

12. Brief Description of self learning / E-learning component

- 1. <u>https://www.youtube.com/watch?v=cFOZplkRqsk&authuser=2</u>
- 2. <u>https://www.youtube.com/watch?v=HJk1Eodmf9A&authuser=2</u>
- 3. <u>https://www.youtube.com/watch?v=Fqt7m8LH5GY&authuser=2</u>

FILLE

pro S. Q



- https://youtu.be/2VYF_t51FyE 4.
- 5. https://youtu.be/hjzA_rZG-bU

13. Books Recommended

- 1. Professional Ethics and Morals by Prof.A.R.Aryasri, DharanikotaSuyodhana Maruthi
- 2. Professional Ethics and Human Values by A. Alavudeen, R.KalilRahman and M. Jayakumaran
- 3. Professional Ethics and Human Values by Prof.D.R.Kiran-Tata McGraw-Hill 2013

Rentalice

1.	Name of the De	epartment: Mathe	ematics			-	S. Maria
2.	Course Name	Basics of Metric Space	L		Т		Р
3.	Course Code	17070108	2		0		0
4.	Type of Course	e (use tick mark)	Core ()	DSE ()	AEC ()	SEC	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tuto	rials, Practical				
Le	ctures = 30		Tutorials = 0)	Practical = 0		
8.	Course Descrip	otion:					

The course unit aims to introduce the basic ideas of metric spaces. This course is designed as a basic introductory course in the analysis of metric.

9. Course Objectives:

The aim of the course is to provide for the students an introduction to theory of metric spaces with emphasis on those topics that are important to higher mathematics. The course focuses on the basic notions of metric spaces, properties of continuous mappings selected types of metric spaces (compact and connected spaces) and basic theorems on metric spaces.

10. Course Outcomes (COs):

On successful completion of this course, students will be able toidentify the three properties of a metric or distance; define the basic terms and concepts in metric space, classify and explain open and closed sets, adherent points, convergent and Cauchy convergent sequences, complete spaces, compactness and connectedness etc., and prove logically theorems in metric space using the definitions of basic terms and properties of metric spaces.

11. Unit wise detailed content

Unit-1 Number of lectures = 15 | Title of the unit: Basics of Metric Space

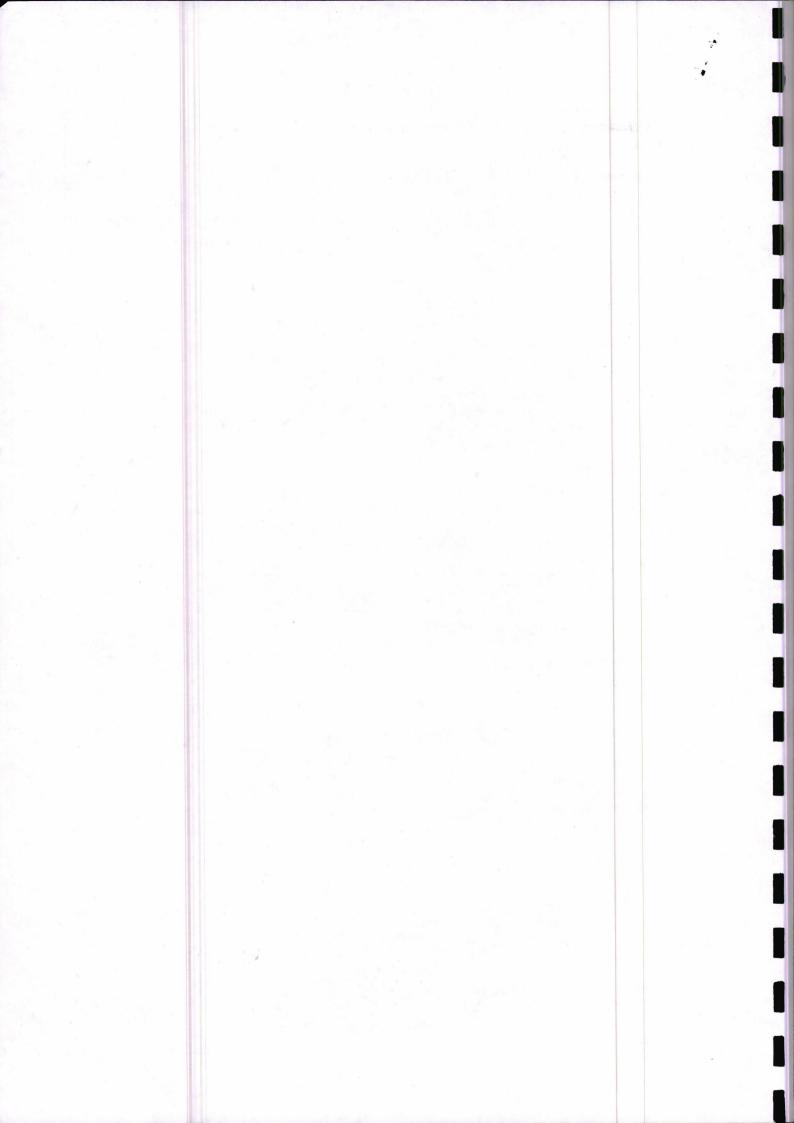
Metric on a set, pseudo-metrics and metrics Distance between two sets. Equivalent metrics, Limit points and closure: closed sets, Derived set of a set. Adherent points and closure of a set, Dense-subsets, Interior of a set and its properties, Subspaces, Product spaces, Structure of Open balls in a product space. Closures and interiors in a product space, Finite product of metric spaces.

Unit – 2 Number of lectures = 15 Title of the unit: Continuous Functions

Convergent sequences. Cauchy sequences, adherent points and limit points in terms of convergent sequences, Continuity at a point, Continuity over a space, Continuity of composite, graph and projection maps, Algebra of real valued continuous functions in a metric space. Homeomorphisms, Isometries, relation between isometries and Homeomorphism, Uniform continuity.

Den Flolig

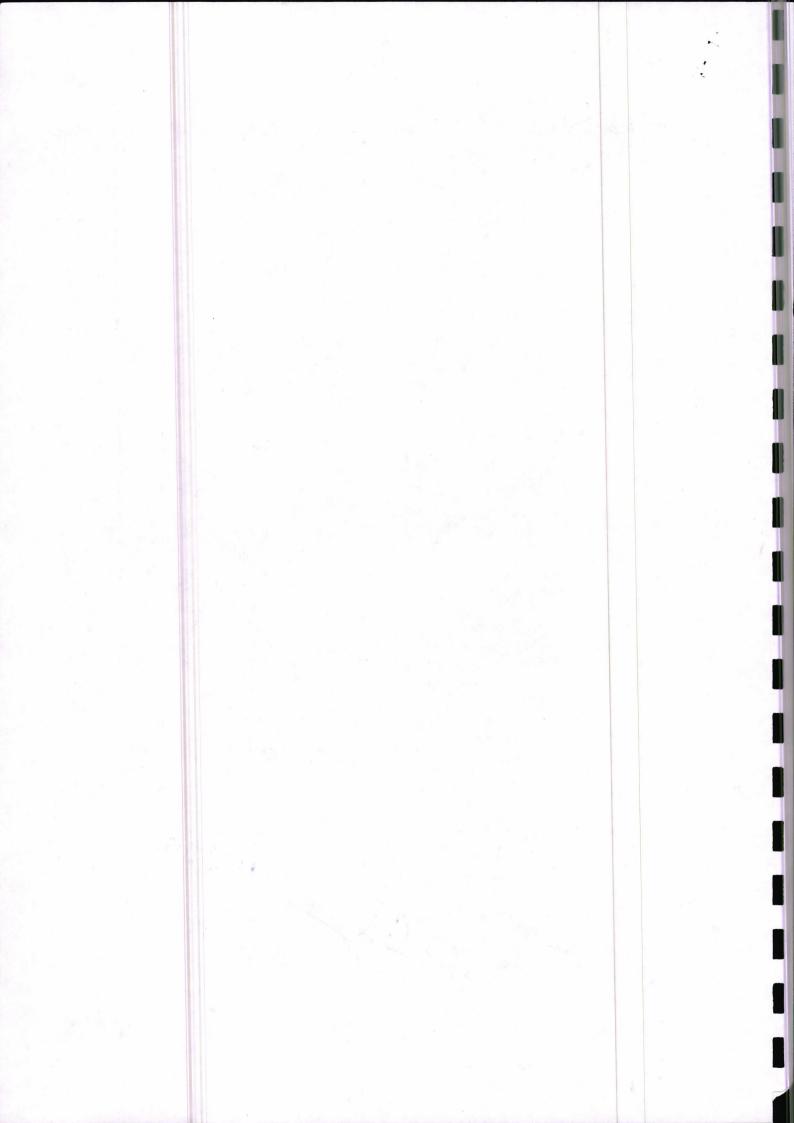
12. Brief Description of self learning / E-learning component


http://www.maths.manchester.ac.uk/~cwalkden/ergodic-theory/metric_spaces.pdf

http://www.math.northwestern.edu/~scanez/courses/320/notes/metric-spaces.pdf

Ko C.Z

http://alpha.math.uga.edu/~usher/notes.pdf


http://www.newagepublishers.com/samplechapter/001589.pdf

- 1. G. F Simmons: Introduction to Topology and Modern Analysis, McGraw Hill, India
- 2. E.T Copson: Metric Spaces, Cambridge
- 3. Dieudonne: Foundation of Modern Analysis, Academic Press, NY
- 4. Kasriel: Metric Spaces, Wiley, NY

I

DC. D. J.

2.	Course Name	Complex Analysis		L		Т		Р
3.	Course Code	17070201	1.92 -	4	and Market States	0		0
4.	Type of Course mark)	e (use tick	Core	(*)	DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)		(u	requency se tick arks)	Even (✓)	Odd ()	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures,	Tutoria	ls, Practic	al			
Le	ctures = 50			Tutorials	= 0	Practical =0)	

8. Course Description:

The subject gives an introduction to the theory of functions of complex variable. Discuss in the course are analytic and harmonic functions and their properties, power series and Laurent series, isolated singularities, Cauchy's integral theorem and residue calculus.

9. Course Objectives:

Students will be equipped with the understanding of the fundamental concepts of complex Analysis. In particular, students will acquire the skill of contour integration to evaluate complicated real integrals via residue calculus.

10. Course Outcomes (COs):

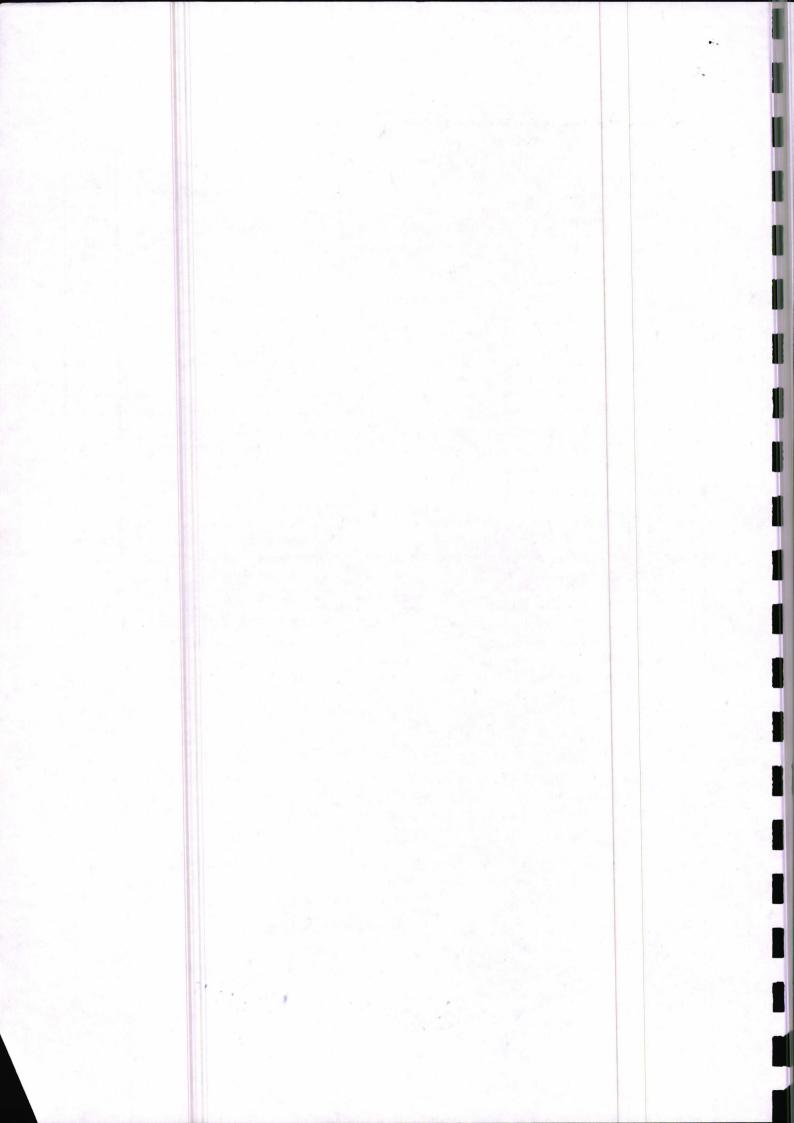
After studied the course will be able to analyses complex exponential, logarithm and Calculate the image of circles and lines. Find harmonic function, Express analytic functions in terms of power series and Laurent series. Calculate complex line integrals and some infinite real integrals using Cauchy's integral theorem or residue calculus.

11. Unit wise detailed contentUnit-1Number of lectures = 15Title of the unit: Function of Complex Variable

Analytic functions and their properties, Cauchy-Riemann equations in Cartesian and polar coordinates. Power series, Radius of convergence, Differentiability of sum function of a power series, Branches of many valued functions with special reference to arg z, log z and z^a , Complex integration, Cauchy theorem, Cauchy's integral formula, Poisson's integral formula, Higher order derivatives, Complex integral as a function of its upper limit, Morera's theorem, Cauchy's inequality, Liouville's theorem, The fundamental theorem of algebra., Taylor's theorem.

Unit – 2 Number of lectures = 15 Title of the unit: Zeros of Analytic Functions

Zeros of an analytic function, Laurent's series, Isolated singularities, Casporati-Weierstress theorem, Limit point of zeros and poles, Maximum modulus principle, Minimum modulus principle, Schwarz lemma, Meromorphic functions, The argument principle, Rouche's theorem, Inverse function theorem.


Unit – 3 Number of lectures = 10 Title of the unit: Calculus of Residue

Calculus of residues, Cauchy's residue theorem, Evaluation of integrals, Bilinear transformations, their properties and classifications, Definitions and examples of Conformal mappings, Space of analytic functions and their completeness, Hurwitz's theorem, Montel's theorem, Riemann mapping theorem.

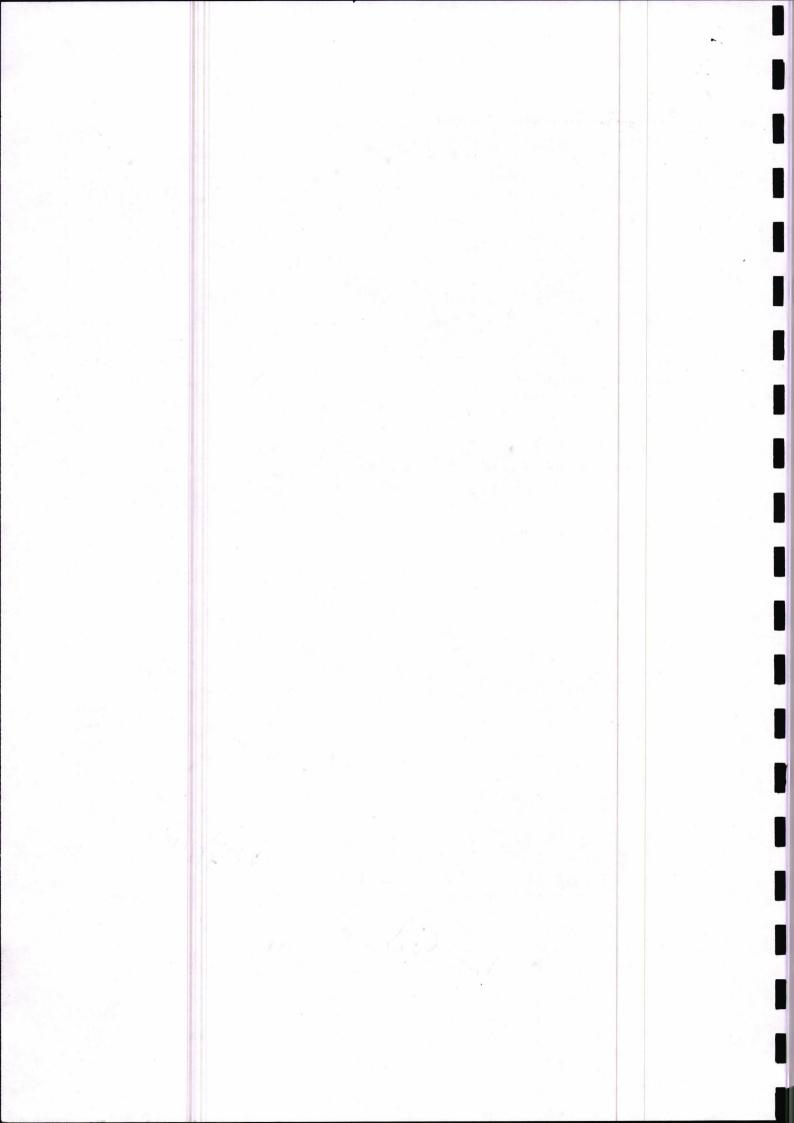
Unit – 4 Number of lectures = 10 Title of the unit: Integral Functions.

Integral Functions, Factorization of an integral function, Weierstrass' factorisation theorem, Factorization of sine function, Gamma function and its properties, Stirling formula, Integral version of gamma function,

New FICINS

Riemann Zeta function, Riemann' functional equation, Schwarz Reflection principle.

12. Brief Description of self learning / E-learning component


www.youtube.com/watch?v=yV_v6zxADgY&index=10&list=PLbMVogVj5nJS_i8vfVWJG16mPcoEK MuWT

https://nptel.ac.in/courses/111107056/

https://nptel.ac.in/courses/111103070/

- 1. H.A. Priestly, Introduction to Complex Analysis, Clarendon Press, Oxford, 1990.
- 2. J.B. Conway, Functions of one Complex variable, Springer-Verlag, International student-Edition, Narosa Publishing House, 1980.
- 3. Liang-shin Hann&Bernand Epstein, Classical Complex Analysis, Jones and Bartlett Publishers International, London, 1996.
- 4. E.T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford University Press, London.
- 5. E.C. Titchmarsh, The Theory of Functions, Oxford University Press, London.
- 6. L.V. Ahlfors, Complex Analysis, McGraw Hill, 1979.

PS. Ju

2. Course Name	Measure Theory	L		Τ		Р
3. Course Code	17070202	4		0		0
4. Type of Course	(use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even (🗸	() Odd ()	Either Sem ()	Every Sem ()
7. Total Number of	f Lectures, Tuto	rials, Practical				
Lectures = 50		Tutorials = 0	P	ractical = 0	1.	Carl Section
8. Course Descript	ion:					

Measure theory and theory of the integral developed by Lebesgue at the beginning of the last century found numerous applications in other branches of pure and applied mathematics, for example in the theory of (partial) differential equations, functional analysis and fractal geometry; it is used to give mathematical foundation to probability theory and statistics, and on the real line it gives a natural extension of the Riemann integral which allows for better understanding of the fundamental relations between differentiation and integration. This course provides the essential foundations of this important aspect of mathematical analysis.

9. Course Objectives:

Students will be able to understand :

- 1. Studying the theory of Lebesgue measure through the abstract theory of Lebesgue-Stieltjes measures.
- 2. Studying the differences between the Riemann integral and the Lebesgue integral as a basis for further study of function spaces.

10. Course Outcomes (COs):

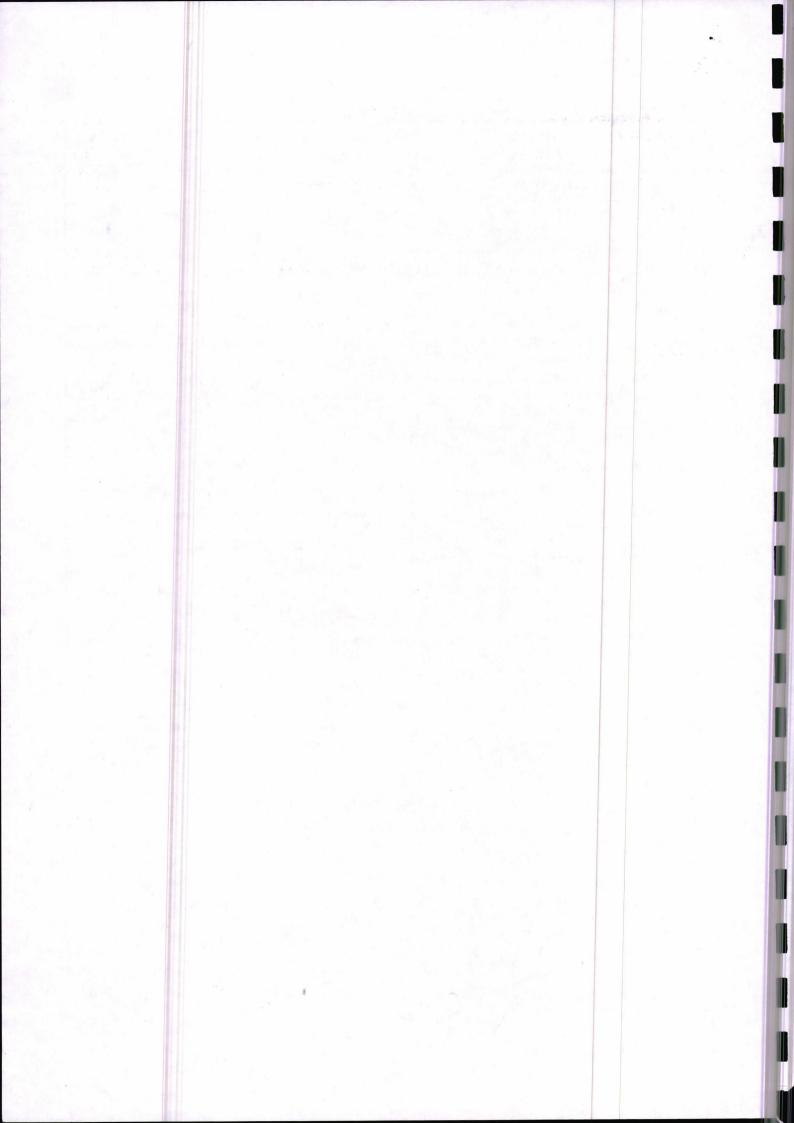
By the end of this course, students should be able to

- 1. Minimal: Essential understanding of the concepts of measure and Lebesgue integral.
- 2. Expected: Additionally, students should master the technique of calculating the Lebesgue integral and understand the applications of Lp-spaces in probability theory

11. Unit wise detailed content

Unit-1 Number of lectures = 10 Title of the unit: Measurable Functions

Measures, some properties of measures, outer measures, extension of measures, uniqueness of extension, completion of a measure, the LUB of an increasingly directed family of measures. Measurable functions, combinations of measurable functions, limits of measurable functions, localization of measurability, simple functions.


Unit – 2 Number of lectures = 10 Title of the unit: Measure Spaces

Measure spaces, almost everywhere convergence, fundamental almost everywhere, convergence in measure, fundamental in measure, almost uniform convergence, Egoroff's theorem, Riesz-Weyltheorem. Integration with respect to a measure: Integrable simple functions, non-negative integrable functions, integrable functions, integrable functions, integrable functions, mean convergence.

Unit – 3 Number of lectures = 15 Title of the unit: Product and signed measures

Product Measures: Rectangles, Cartesian product of two measurable spaces, measurable rectangle, sections, the product of two finite measure spaces, the product of any two measure spaces, product of two σ - finite measure spaces; iterated integrals, Fubini's theorem, a partial converse to the Fubini's theorem,

Nu alb/19 A. Z.X

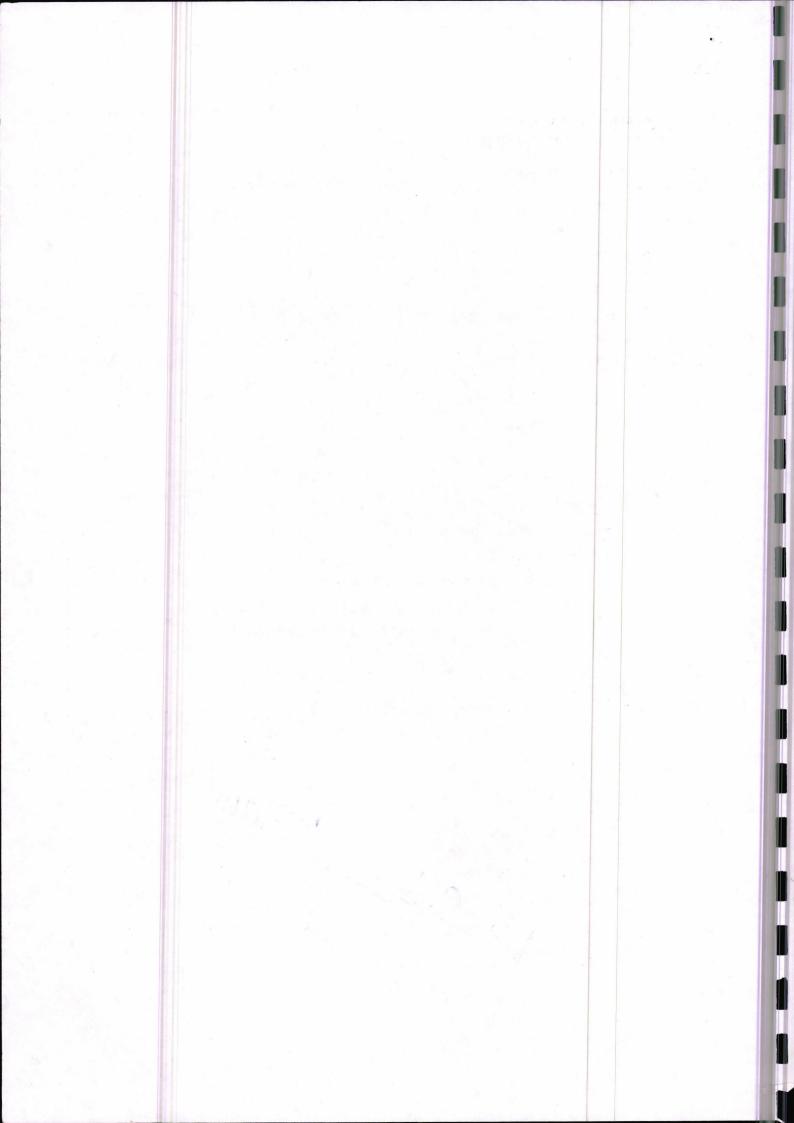
Signed Measures: Absolute continuity, finite singed measure, contractions of a finite signed measure, purely positive and purely negative sets, comparison of finite measures, Lebesgue decomposition theorem, a preliminary Radon-Nikodym theorem, Hahn decomposition, Jordan decomposition, upper variation, lower variation, total variation, domination of finite signed measures, the Radyon-Nikodym theorem for a finite measure space, the Radon-Nikodym theorem for a σ - finite measure space

Unit – 4 Number of lectures = 15 Title of the unit: Measurable Integration

Integration over locally compact spaces: continuous functions with compact support, $G\delta$'s and $F\sigma$'s, Baire sets, Baire function, Baire-sandwich theorem, Baire measure, Borel sets, Regularity of Baire measures, Regular Borel measures, Integration of continuous functions with compact support, Riesz-Markoff's theorem.

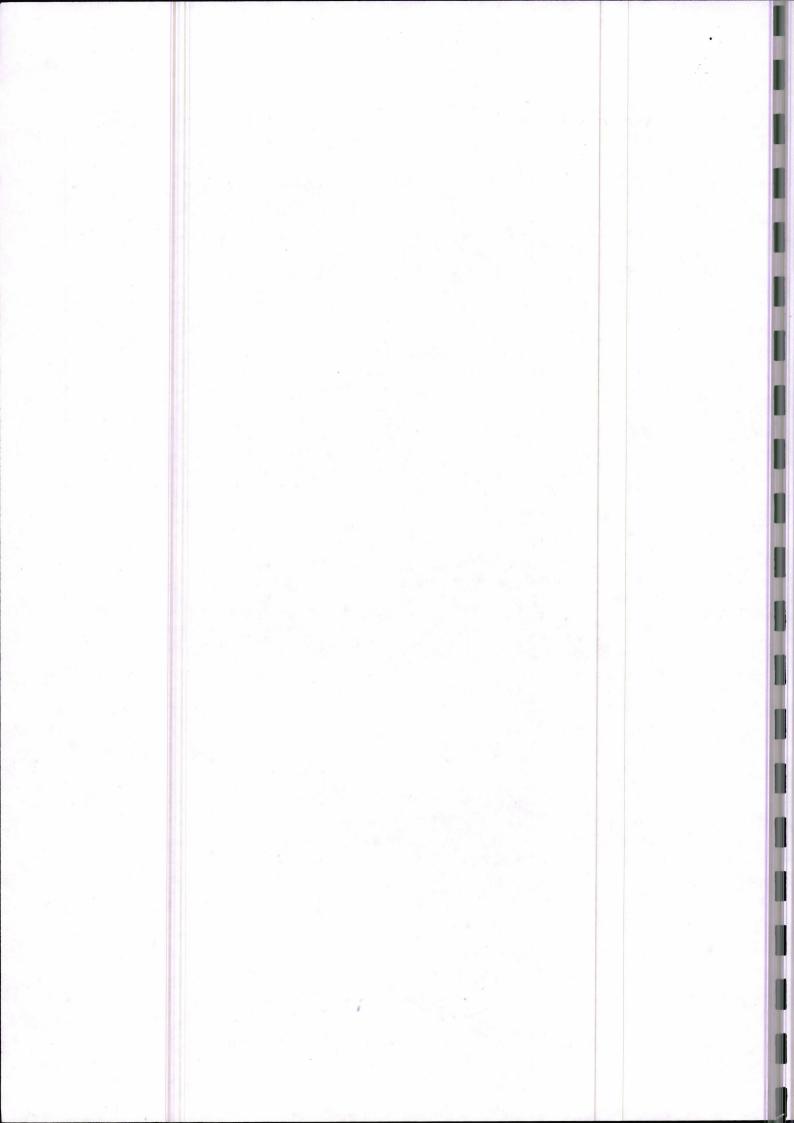
12. Brief Description of self learning / E-learning component

Learners are offered e-learning courseware (also called Web-based training (WBT)), which can be complemented by supplemental resources and assessments.


Courseware is usually housed on a Web server, and learners can access it from an online learning platform or on CD-ROM

http://www.nptelvideos.com/course.php?id=731

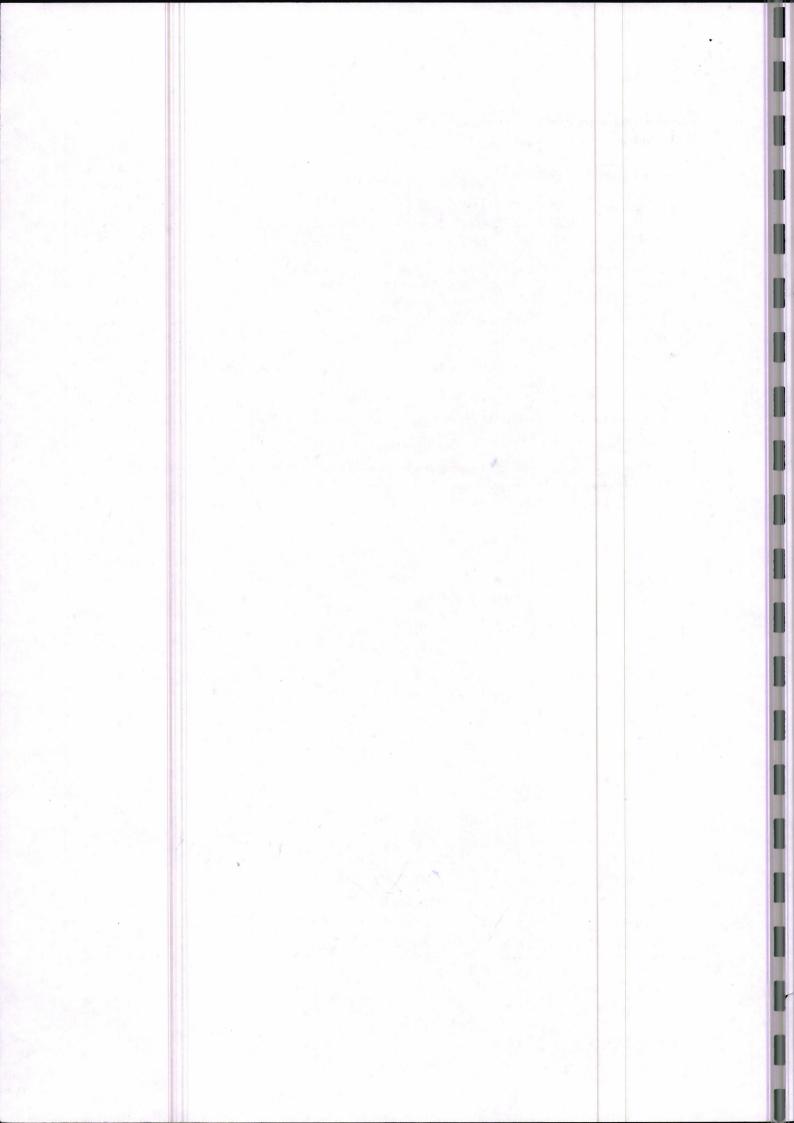
https://swayam.gov.in/course/3790-measure-theory


- 1. H.L.Royden: Real Analysis, Prentice Hall of India, 3rd Edition, 1988.
- 2. G.de Barra: Measure Theory and Integration, Wiley Eastern Ltd., 1981.
- 3. P.R.Halmos: Measure Theory, Van Nostrand, Princeton, 1950.
- 4. I.K.Rana: An Introduction to Measure and Integration, Narosa Publishing House, Delhi, 1997.
- 5. R.G.Bartle: The Elements of Integration, John Wiley and Sons, Inc. New York, 196

Ner 26/19 S. S.

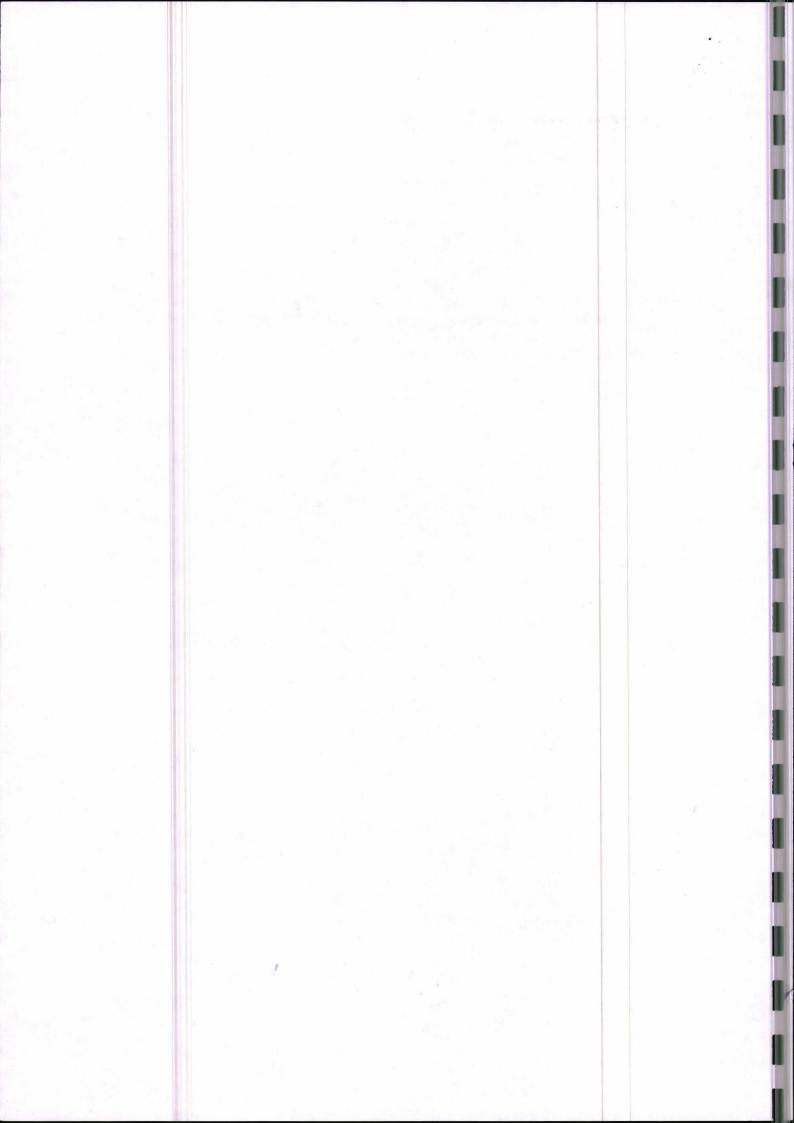
. Name of the De	Dential 1:00		T		T	
2. Course Name	Partial differential	L	Т			P
Come Cala	Equations 17070203	4	0			0
Course Code		4 Core (✓)	DSE ()			
	e (use tick mark)			AEC ()	SEC () Either	OE ()
. Pre-requisite (if any)		6. Frequency (use tick marks)	Even (✓)	Odd ()	Sem ()	Every Sem ()
	of Lectures, Tutorial					
Lectures = 50		Tutorials = 0	Prac	ctical = 0		
Course Descrip	near equations, Cauc					
olutions, Duhamel ^a alue formulas, Pro arabolic equations niqueness theorems Course Object to use students kno ive a concise acco trong and weak solu	ives: wledge in Multivaria ount of fundamental outions.	equation, fundament functions, Green's fi sion, fundamental s ble calculus in solvi	al solutions, 1 inction, Ener olution, maxi ng Partial dif	maximum j gy method mum princ ferential ec	principles s, Perron's ciple, exis quations as	and mea s method tence an nd also t
Many physical pro by partial different	letion of this course, s performed by the second se	ing strings, diffusion course provides an	n of heat and			
In successful comp Many physical pro by partial different analysing standard 1. Unit wise detail	letion of this course, s pcesses such as vibrat ntial equations. This partial differential eq led content	ing strings, diffusion course provides an uations.	n of heat and introduction	to metho	ds for so	
On successful comp Many physical pro- by partial differer analysing standard 1. Unit wise detail Unit-1 Nun	letion of this course, s ocesses such as vibrat ntial equations. This partial differential eq	ing strings, diffusion course provides an uations. First order part	n of heat and introduction ial differenti	to metho	ds for sol	lving an
On successful comp Many physical pro by partial different analysing standard 1. Unit wise detail Unit-1 Nun Linear and semi-line	letion of this course, s occesses such as vibrat ntial equations. This partial differential eq led content nber of lectures = 10	ing strings, diffusion course provides an uations. First order part problem, Method of	n of heat and introduction ial differenti characteristic	to metho al equation cs. Nonline	ds for so ns ar first ord	lving an
In successful comp Many physical pro- by partial different analysing standard 1. Unit wise detail 1. Unit wise detail	letion of this course, s occesses such as vibrat ntial equations. This partial differential eq ed content her of lectures = 10 ar equations, Cauchy tegrals, Envelopes and	ing strings, diffusion course provides an uations. First order part problem, Method of d singular solutions,	n of heat and introduction ial differenti characteristic Lagrange and	to metho al equation cs. Nonline I Charpit m	ds for so ns ar first ord	lving an
On successful compMany physical problemby partial differeranalysing standard1. Unit wise detailUnit-1Nuninear and semi-line'DE's: Complete interst order PDE's.Unit – 2Nun'auchy-Kowalewsk	letion of this course, s occesses such as vibrat ntial equations. This partial differential eq ed content her of lectures = 10 ar equations, Cauchy	ing strings, diffusion course provides an uations. First order part problem, Method of d singular solutions, Classical and wo only), Holmgren's U	n of heat and introduction ial differenti characteristic Lagrange and eak solutions Jniqueness TI	to metho al equation cs. Nonline l Charpit m	ds for sol ns ar first ord ethods for ethod of so	lving an ler solving eparatio
On successful comp Many physical pro- by partial different analysing standard 1. Unit wise detail Unit-1 Num- inear and semi-line 'DE's: Complete intri irst order PDE's. Unit – 2 Num Cauchy-Kowalewsky f variables for Way	letion of this course, s pocesses such as vibrat ntial equations. This partial differential eq led content nber of lectures = 10 ar equations, Cauchy tegrals, Envelopes and nber of lectures = 10 y theorem (statement	ing strings, diffusion course provides an uations. First order part problem, Method of d singular solutions, Classical and wo only), Holmgren's U	n of heat and introduction ial differenti characteristic Lagrange and eak solutions Jniqueness Tl imension, cla	a to metho al equation cs. Nonline l Charpit m cheorem, Me ssical and v	ds for sol ns ar first ord ethods for ethod of so weak solut	lving an ler solving eparatio ions.
On successful comp Many physical prob by partial differer analysing standard 1. Unit wise detail Init-1 Nun inear and semi-line DE's: Complete im rst order PDE's. Init – 2 Nun Cauchy-Kowalewsk f variables for Wav Init – 3 Nun Classification of sudamental solution	letion of this course, s pcesses such as vibrat ntial equations. This partial differential eq led content iber of lectures = 10 car equations, Cauchy tegrals, Envelopes and iber of lectures = 10 y theorem (statement e equation, Wave equ	ing strings, diffusion course provides an uations. First order part problem, Method of d singular solutions, Classical and we only), Holmgren's U ation in one space d Title of the unit equation	n of heat and introduction ial differenti characteristic Lagrange and eak solutions Jniqueness Tl imension, cla : Second ord	a to metho al equation cs. Nonline l Charpit m cheorem, Me ssical and v er Elliptic variables	ds for sol ns ar first ord ethods for ethod of so weak solut (Laplace) Laplace	lving an ler solving eparatio ions.
On successful comp Many physical probability by partial differer analysing standard 1. Unit wise detail Unit-1 Nun inear and semi-line DE's: Complete im rst order PDE's. Unit - 2 Nun Cauchy-Kowalewsk f variables for Wav Unit - 3 Nun Classification of s indamental solution ireen's function, Er Init - 4 Num	letion of this course, s presses such as vibrat partial differential eq led content aber of lectures = 10 partial differential eq led content ar equations, Cauchy tegrals, Envelopes and aber of lectures = 10 y theorem (statement e equation, Wave equation ber of lectures = 10 econd order equation as, maximum principle argy methods, Perron aber of lectures = 20	ing strings, diffusion course provides an uations. First order part problem, Method of d singular solutions, Classical and we only), Holmgren's Unation in one space d Title of the unit equation ons, Method of seles and mean value in 's method. Title of the unit equation, Highe	introduction introduction ial differenti characteristic Lagrange and eak solutions Jniqueness TI imension, cla : Second ord paration of formulas, Pro : Parabolic of r order PDE	a to metho al equation cs. Nonline I Charpit m I Charpit m cs. Nonline I Charpit m ssical and v er Elliptic variables perties of I equation, S 's	ds for sol ns ar first ord ethods for ethod of so weak solut (Laplace) Laplace harmonic to Second ord	lving an ler solving eparatio ions. equation functions der wave
On successful comp Many physical proby by partial different analysing standard 1. Unit wise detail Unit-1 Num inear and semi-line 'DE's: Complete interstorder PDE's. Unit – 2 Num 'auchy-Kowalewske f variables for Wav Unit – 3 Num Classification of seundamental solution Green's function, End Unit – 4 Num	letion of this course, s pocesses such as vibrat ntial equations. This partial differential eq led content aber of lectures = 10 war equations, Cauchy tegrals, Envelopes and aber of lectures = 10 y theorem (statement e equation, Wave equation aber of lectures = 10 when the equation of the equation maximum principle pergy methods, Perron	ing strings, diffusion course provides an uations. First order part problem, Method of d singular solutions, Classical and we only), Holmgren's U iation in one space d Title of the unit equation ons, Method of se les and mean value a i's method. Title of the unit equation, Highe on, fundamental solution	introduction introduction ial differenti characteristic Lagrange and eak solutions Jniqueness Tl imension, cla : Second ord paration of formulas, Pro : Parabolic of r order PDE tion, maximut	a to metho al equation cs. Nonline I Charpit m I Charpit m cheorem, Me ssical and v er Elliptic variables perties of I equation, S c's m principle	ds for sol ns ar first ord ethods for ethod of so weak solut (Laplace) Laplace harmonic to Second ord o, existence	lving an ler solving eparatio ions. equations functions der wave

۴.


Energy Methods. Method of separation of variables for Heat equations, General solutions of higher order PDE's with constant coefficients.

12. Brief Description of self learning / E-learning component

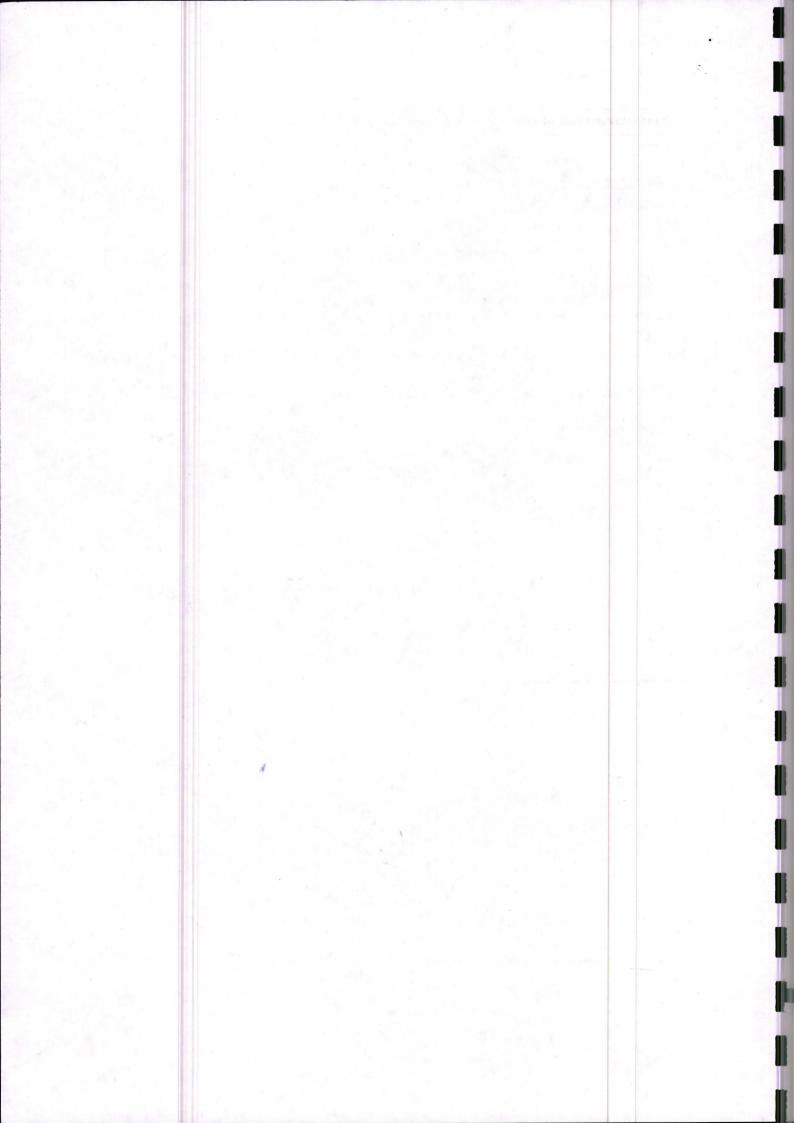
- 1. http://nptel.ac.in/courses/111103021/39
- 2. http://freevideolectures.com/Course/3294/Partial-differential-equations
- 3. <u>https://math.stackexchange.com/questions/2508796/finding-the-complete-integral-of-a-non-</u> linear-pde-of-the-first-order


- 1. L. C. Evans, Partial Differential Equations, AMS, 1998.
- 2. R. McOwen, Partial Diffrential Equations, Pearson, 2002.
- 3. I. N. Sneddon, Elements of Partial Differential Equations, McGraw Hill, 1957.
- 4. F. John, Partial Differential Equations, Springer Verlag, 1982.
- 5. W.A. Strauss, Partial Differential Equations: An Introduction, John Wiley, 1992.
- 6. W. E. Willams, Partial Differential Equations, Oxford, 1980.
- 7. T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publishing House.

W C. & Non-Stories

.Name of the Dep .Course Name	Partial differential					_
.Course maine	Equations Lab	L]]	[P
.Course Code	17070204	0	()		4
.Type of Course		Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
Pre-requisite		6.Frequency	Even (✓)	Odd ()	Either	Every
(if any)		(use tick marks)			Sem ()	Sem ()
	f Lectures, Tutorials,					
ectures = 0		Tutorials = 0	Pra	ctical = 35		
Course Descript						~
	linear equations, Ca					
	ation in one space					
	itions, maximum pr	-				
	Parabolic equations	in one space dime	ension, rund	amental so	olution, r	naximu
principle.						Sec. al
Course Object						
2	of this course is to in			-	outational	metho
using MATLAE	<mark>8, PYTHON, MATH</mark>	EMATICA, SCILA	AB, MAPLE	E etc.		
At the end of thi	s course, a student	would: Learn basic	cs of these	softwares	program	ming G
	tial Differential Equa				1 0	Ŭ
O.Course Outco	omes (COs):					
	mes (COs): mpletion of this cours	se, students will be	able to			
On successful con	mpletion of this cours		A Local State of the second state of the secon	ns using the	e softwar	e Matla
On successful con Solve elliptic, p		, Laplace, wave, H	A Local State of the second state of the secon	ns using the	e softwar	e Matla
On successful con Solve elliptic, p Python, Mathen	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple	, Laplace, wave, H	eat equatior			
On successful con Solve elliptic, p Python, Mathen	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s	, Laplace, wave, H	eat equatior			
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations.	, Laplace, wave, H oftware to solve sc	eat equatior	mathemat	tical prob	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s	, Laplace, wave, H oftware to solve sc	eat equatior	mathemat	tical prob	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal	, Laplace, wave, He oftware to solve sc b – Do at least 10 e	eat equation ientific and experiment	mathemat	tical prob e followin	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I.Partial Differ	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi	, Laplace, wave, He oftware to solve sc b – Do at least 10 c ing Elliptic Partial 1	eat equation ientific and experiment Differential	mathemat s from the Equations	tical prob e followin	lems lil
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi	, Laplace, wave, Ho oftware to solve sc b – Do at least 10 c ing Elliptic Partial l ing Parabolic Partia	eat equation ientific and experiment Differential I Differenti	mathemates mathemates from the Equations and Equations	tical prob e followin ns.	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi	, Laplace, wave, He oftware to solve sc b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part	eat equation ientific and experiment Differential I Differenti	mathemates mathemates from the Equations and Equations	tical prob e followin ns.	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho	, Laplace, wave, He oftware to solve sc b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part	eat equation ientific and experiment Differential I Differenti	mathemates mathemates from the Equations and Equations	tical prob e followin ns.	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve Lapla	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation.	, Laplace, wave, He oftware to solve sc b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part	eat equation ientific and experiment Differential I Differenti	mathemates mathemates from the Equations and Equations	tical prob e followin ns.	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve Lapla	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation.	, Laplace, wave, He oftware to solve sc b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part	eat equation ientific and experiment Differential I Differenti	mathemates mathemates from the Equations and Equations	tical prob e followin ns.	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve Lapla 6. To solve Poiss	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation.	, Laplace, wave, Ho oftware to solve so b – Do at least 10 o ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part od of Lines.	eat equation ientific and experiment Differential I Differenti	mathemates mathemates from the Equations and Equations	tical prob e followin ns.	lems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve Lapla 5. To solve Poisso 7. To solve one-d	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation.	, Laplace, wave, Ho oftware to solve so b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part od of Lines.	eat equation ientific and experiment Differential Il Differenti tial Differert	s from the Equations al Equation ntial Equation	tical prob e followin ns. ions.	ilems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve transi 5. To solve Lapla 6. To solve Poisso 7. To solve one-d 8. To solve one-d	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equ	, Laplace, wave, Ho oftware to solve so b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part od of Lines.	eat equation ientific and experiment Differential Il Differenti tial Differert	s from the Equations al Equation ntial Equation	tical prob e followin ns. ions.	ilems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I.Partial Differen C. Finite Differen G. Finite Differen G. Finite Differen G. To solve transi G. To solve transi G. To solve Doisse To solve one-d B. To solve one-d B. To solve one d	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equ imensional heat cond	, Laplace, wave, Ho oftware to solve sc b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Partia od of Lines.	eat equation ientific and experiment Differential Il Differenti tial Differenti tial Differenti	s from the Equations al Equation ntial Equation	tical prob e followin ns. ions.	ilems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different I. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve transi 5. To solve Poisso 7. To solve one-d 3. To solve one-d 3. To solve one d mplicit method. 9. To solve First o	mpletion of this course arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equi imensional heat conce order Quasi –Linear L	, Laplace, wave, Ho oftware to solve sc b – Do at least 10 c ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Partia od of Lines.	eat equation ientific and experiment Differential Il Differenti tial Differenti tial Differenti	s from the Equations al Equation ntial Equation	tical prob e followin ns. ions.	ilems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different 1. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve transi 5. To solve Poisso 7. To solve one d mplicit method. 9. To solve First o 10. To solve Max	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equ imensional heat conc order Quasi –Linear L imum Principle.	, Laplace, wave, Ho oftware to solve so b – Do at least 10 o ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Partia od of Lines. lation. luction equation by Partial Differential	eat equation ientific and experiment Differential Il Differential tial Differenti tial Differenti tial Differenti Equation	s from the Equations al Equation ntial Equation and ii) Cra	tical prob e followin ns. ions.	lems lik
Solve elliptic, p Python, Mathen Write simple pr Partial different 11.Partial Differ 1. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve transi 5. To solve Poisso 7. To solve one d implicit method. 9. To solve First o 10. To solve Max 11. General solut	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equ imensional heat conc order Quasi –Linear L imum Principle. ions of higher order I	, Laplace, wave, Ho oftware to solve sc b – Do at least 10 of ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Partia od of Lines. Nation. luction equation by Partial Differential PDE's with constar	eat equation ientific and experiment Differential Il Differenti il Differenti tial Different i) Explicit Equation	s from the Equations al Equation ntial Equation and ii) Cra	tical prob e followin ns. ions.	ilems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different 11.Partial Differ 1. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve transi 5. To solve Poisse 7. To solve one-d 8. To solve one-d 8. To solve one-d 10. To solve First 10. To solve Max 11. General solut	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equ imensional heat conc order Quasi –Linear L imum Principle.	, Laplace, wave, Ho oftware to solve sc b – Do at least 10 of ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Partia od of Lines. Nation. luction equation by Partial Differential PDE's with constar	eat equation ientific and experiment Differential Il Differenti ial Differenti tial Different i) Explicit Equation	s from the Equations al Equation ntial Equation and ii) Cra	tical prob e followin ns. ions.	ilems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different 11.Partial Differ 1. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve transi 5. To solve Poisse 7. To solve one-d 8. To solve one-d 8. To solve one-d 10. To solve First 10. To solve Max 11. General solut	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equ imensional heat conc order Quasi –Linear L imum Principle. ions of higher order I DE via. Method of se	, Laplace, wave, Ho oftware to solve so b – Do at least 10 of ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Part od of Lines. Nation. Iuction equation by Partial Differential PDE's with constant sparation of variable	eat equation ientific and experiment Differential Il Differenti ial Differenti tial Different i) Explicit Equation	s from the Equations al Equation ntial Equation and ii) Cra	tical prob e followin ns. ions.	ilems lik
On successful con Solve elliptic, p Python, Mathen Write simple pr Partial different 1.Partial Differ 1. Finite Differen 2. Finite Differen 3. Finite Differen 4. To solve transi 5. To solve transi 5. To solve transi 5. To solve Poisse 7. To solve one-d 8. To solve one-d 8. To solve one-d 9. To solve First o 10. To solve Max 11. General solut	mpletion of this cours arabolic, hyperbolic natica, Scilab, Maple ograms in any one s ial equations. ential Equation Lal ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ce Methods for Solvi ent PDE using Metho ce equation. on equation. imensional wave equ imensional heat conc order Quasi –Linear L imum Principle. ions of higher order I DE via. Method of se	, Laplace, wave, Ho oftware to solve sc b – Do at least 10 of ing Elliptic Partial I ing Parabolic Partia ing Hyperbolic Partia od of Lines. Nation. luction equation by Partial Differential PDE's with constar	eat equation ientific and experiment Differential Il Differenti ial Differenti tial Different i) Explicit Equation	s from the Equations al Equation ntial Equation and ii) Cra	tical prob e followin ns. ions.	ilems lik

I


12.Brief Description of self learning / E-learning component

https://www.mathworks.in > ... > Partial Differential Equations https://nptel.ac.in/courses/103106118/ https://nptel.ac.in/courses/103106118/3

13.Books Recommended

- Jichun Li, Yi-Tung Chen, Computational Partial Differential Equations Using MATLAB, CRC Press, Boca Raton (2008).
- Randall J. LeVeque, Finite Difference Method for Differential Equations, Course Notes for A Math 585, 586, University of Washington, Seattle, 2004.
- 10. Chapra S.C. and Canale R.P.(2006) Numerical Methods for Engineers, 5th Ed., McGraw Hil.
- 11. M.D Rai Singhania, Ordinary and Partial Differential Equations Engineers, S. Chand Publishing, 2013.
- 12. T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publishing House.

Non-210118 2 C.L

2. Course Name	Operations Research	L	1	ſ		Р
3. Course Code	<mark>1707020</mark> 5	4	()		0
4. Type of Course	e (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even (🗸)	Odd ()	Either Sem ()	Every Sem ()
7. Total Number	of Lectures, Tuto	rials, Practical	and the second second			
Lectures $= 50$		Tutorials = 0	Pra	actical = 0		
8. Course Descrip		1			rammino	Dynami
8. Course Descrip This Course consist Programming, Netw world problems and	ts of different area work Analysis. Abc method to find the	s likes Non Linear Prove area define variou	rogramming,	Integer prog		
Programming, Netw world problems and 9. Course Object The objective of th programming, dyna	ts of different area work Analysis. Abo method to find the ives: is course to empha amic programming and understand c	s likes Non Linear Prove area define variou	of Operation ysis. Throug	Integer prog 1 Technique al Research hout this c	for solvir	eling rea

After Completion of this course the Students will be able to explain the various Techniques of Operational Research. After apply the techniques they will use in real life problems. Students will able to select an optimum solution

11. Unit wise detailed content

Unit-1 Number of lectures = 15 Title of the unit: Dynamic Programming

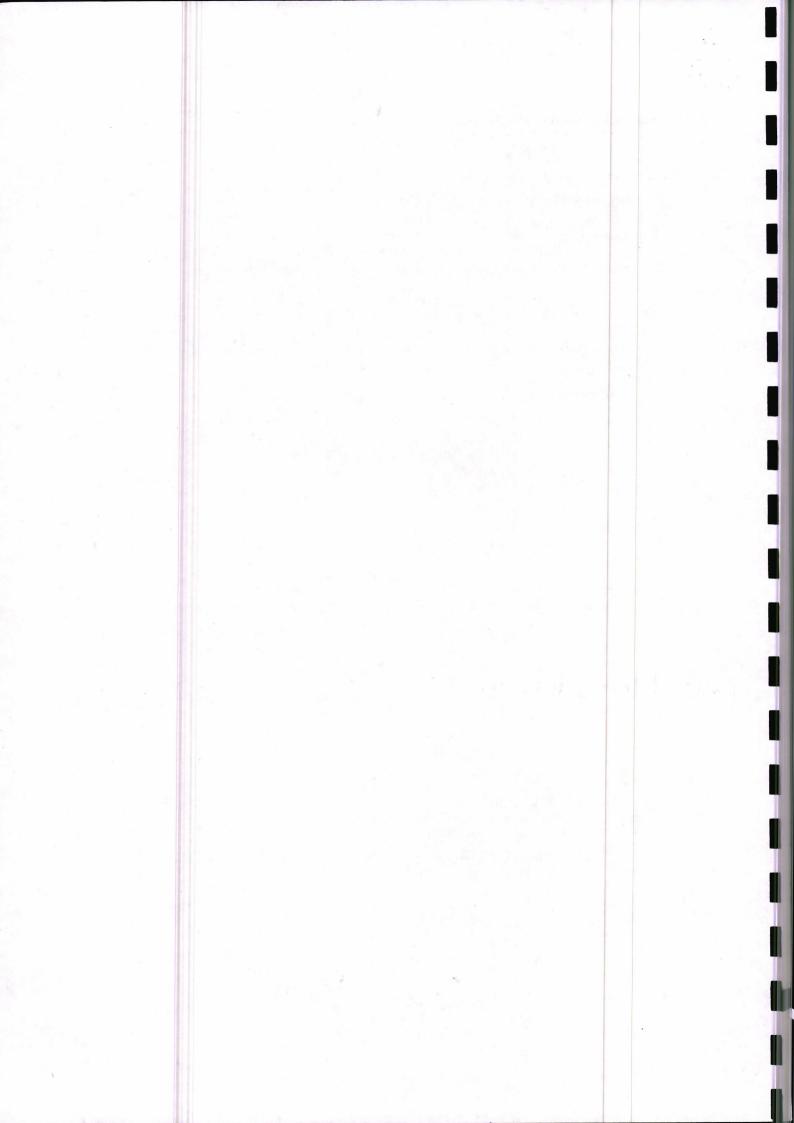
Deterministic and Probabilistic, Dynamics Programming, Game Theory, Two –Person, Zero – Sum Games, Games with Mixed strategies, Graphical Solution, Solution by linear Programming

Basi

Unit -12

Number of lectures = 15 Title of the unit: Integer Programming

Branch and Bound Technique, Application to Industrial Problems Optimal product mix and activity levels. Petroleum-Refinery operation, Blending problems. Economic interpretation of dual linear programming problems. Input-Output analysis, Indecomposable and Decomposable economics


Unit – 3	Number of lectures = 10	Title of the unit: Non Linear Programming and Types of Programming
----------	-------------------------	--

One and Multi-Variable Unconstrained Optimization, Kuhn-Tucker Condition for Constrained Optimization Quadratic Programming, Separable Programming, Convex Programming , Non Convex Programming

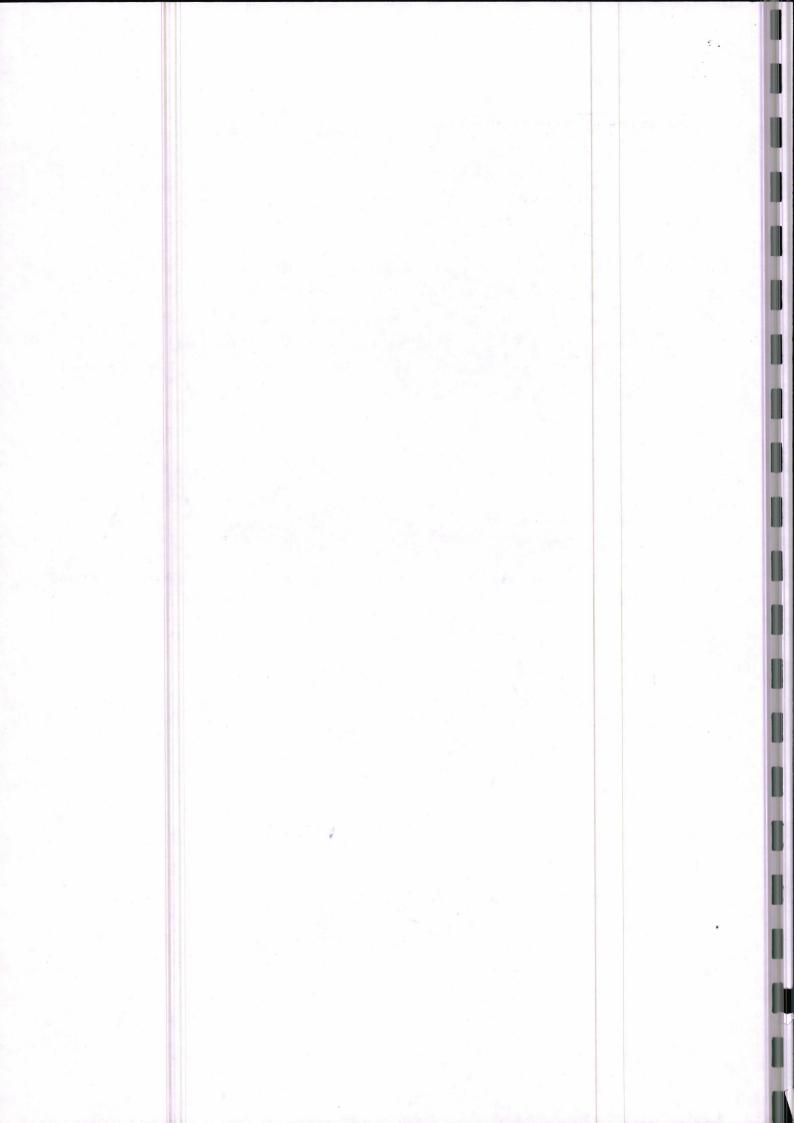
Unit – 4 Number of lectures = 2	0 Title of the unit: Types of Programming and Network Analysis
---------------------------------	---

Shortest Path Problems, Minimum Spanning Tree problems, Maximum Flow Problems, Minimum Cost Flow Problems, Network Simplex Method, Project Planning and Control with PERT-CPM.

& C. Ja New Hellis

12. Brief Description of self learning / E-learning component

https://www.youtube.com/watch?v=ug7O11SZyg0


https://www.youtube.com/watch?v=Lt7OZP_F3jY

https://www.youtube.com/watch?v=vUMGvpsb8dc

13. Books Recommended

- 1. FS Hillier and GJ Leiberman: Introduction to Operation Research(Sixth Edition), McGraw Hill International Edition. This books comes with a CD containing tutorial software
- 2. G. Hdley: Linear Programming, Narosa Publishing House 1995
- 3. G. Hadley, Nonlinear and Dynamic Programming, Addison-Wesley, Reading Mass
- 4. KantiSwarup, P.K. Guptaand Man Mohan, Operational Research, Sultan chand and Sons New Delhi
- 5. Taha H.A., Operations Research-An Introduction, PHI (2007)
- 6. S.S. Rao, Optimization Theory and Applications, Wiley Eastern Ltd, New Delhi.
- 7. Pant J. C., Introduction to optimization: Operations Research, Jain Brothers (2004)

Shur atons

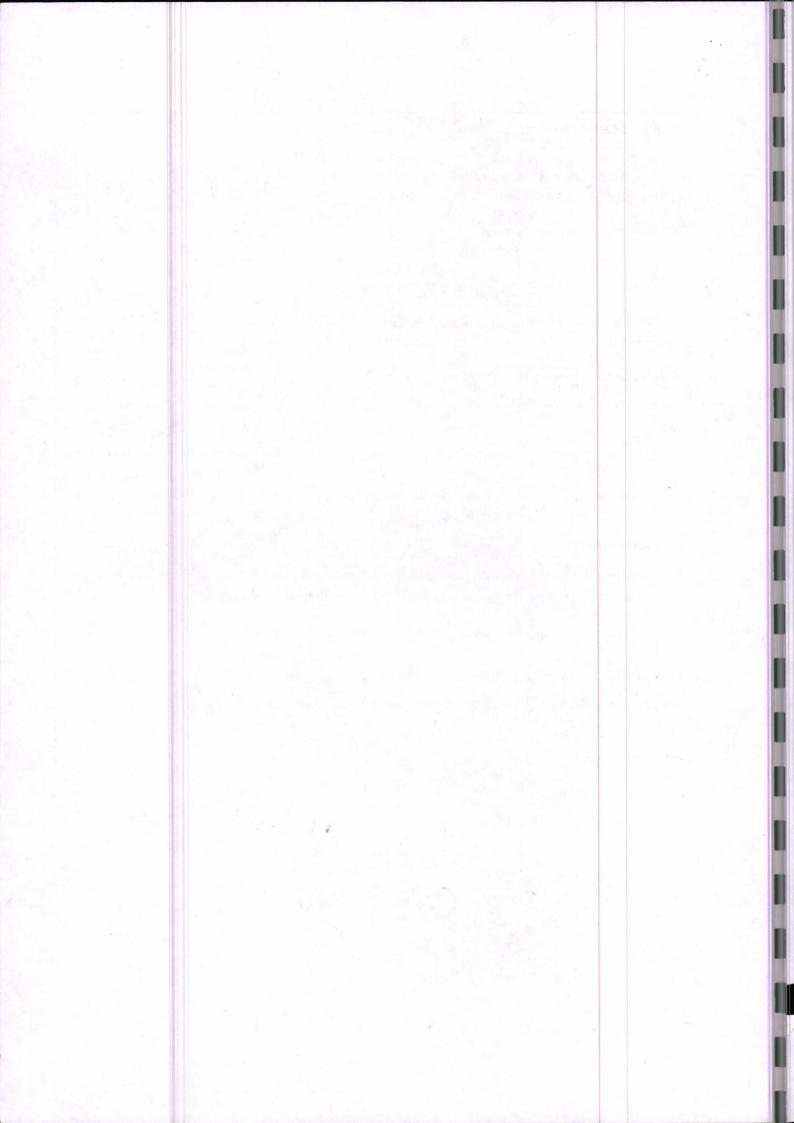
1.	Name of the D	Department: Math	ematics				
2.	Course Name	Operations Research Lab	L	т		Р	
3.	Course Code	<mark>17070206</mark>	4		0		2
4.	Type of Cours	e (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even (√)	Odd ()	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tutor	rials, Practical				
Lee	ctures = 0		Tutorials = 0		Practical :	= 35	

8. Course Description:

Operation Research Lab helps the students to understand the beauty of Math application.

Operations Research is a science of modeling and optimization. It allows you to model real-world problems by using mathematics, statistics, and computers. It provides you tools and theories to solve these real-world problems by finding the optimal solutions to the model's subject to constraints of time, labor, resource, material, and business rules. With Operations Research, people make intelligent decisions to develop and manage their processes.

Course Objectives:


This module aims to introduce students to use quantitative methods and techniques for effective decisions making; model formulation and applications that are used in solving decision making problems.

Course Outcomes (COs):

On successful completion of this course, students will be able to:

Solve the problem on the software like (Maxima, LINGO, MAPLE, Mathematica. MATLAB, Python, SciLab)

S. J.

OR LAB: At least 10 experiments from the following:

- 1. To determine the area of LLP by Integer Programming
- 2. To determine the area by Mixed Integer Programming
- 3. Solve the Dynamic Optimization on Toolbox on any Mathematical Software
- 4. To solve the feasible area by using Dynamic Programming.
- 5. To solve the Multi variable constraint by NLPP
- 6. To solve the Kuhn-Tucker condition by NLPP
- 7. To solve the Linear Programing Refinery
- 8. Solve the matrix programming of Game Theory
- 9. Solve the area by using Quadratic Programming
- 10. Explain the application of Nonlinear Programming on any Mathematical software
- 11. Solve the shortest path by using PERT and CPM.
- 12. Find the Minimum Spanning Tree on MATLAB
- 13. To solve the feasible area by using the property of Convex set.
- 14. Solve the project planning by using PERT and CPM.

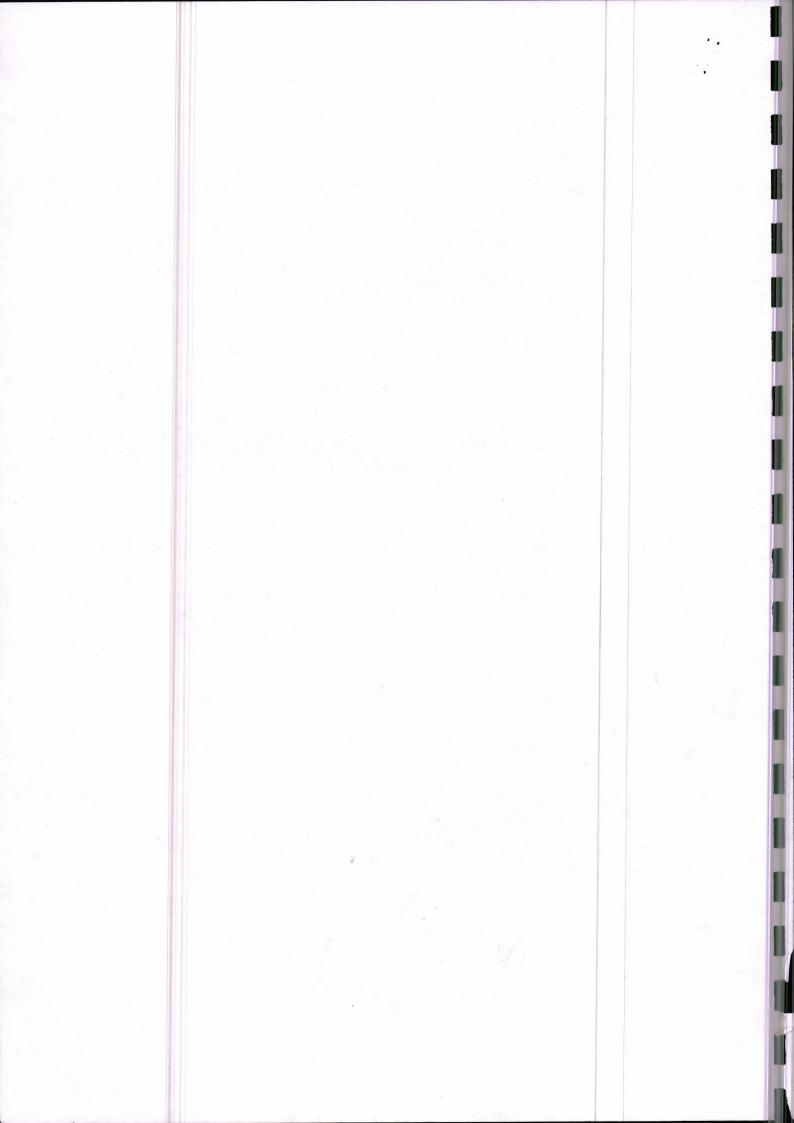
Books Recommended

- 7. FS Hillier and GJ Leiberman: Introduction to Operation Research (Sixth Edition), McGraw Hill International Edition. This book comes with a CD containing tutorial software
- 8. G. Hdley: Linear Programming, Narosa Publishing House 1995
- 9. G. Hadley, Nonlinear and Dynamic Programming, Addison-Wesley, Reading Mass
- 10. Kanti Swarup, P.K. Gupta and Man Mohan, Operational Research, Sultan chand and Sons New Delhi

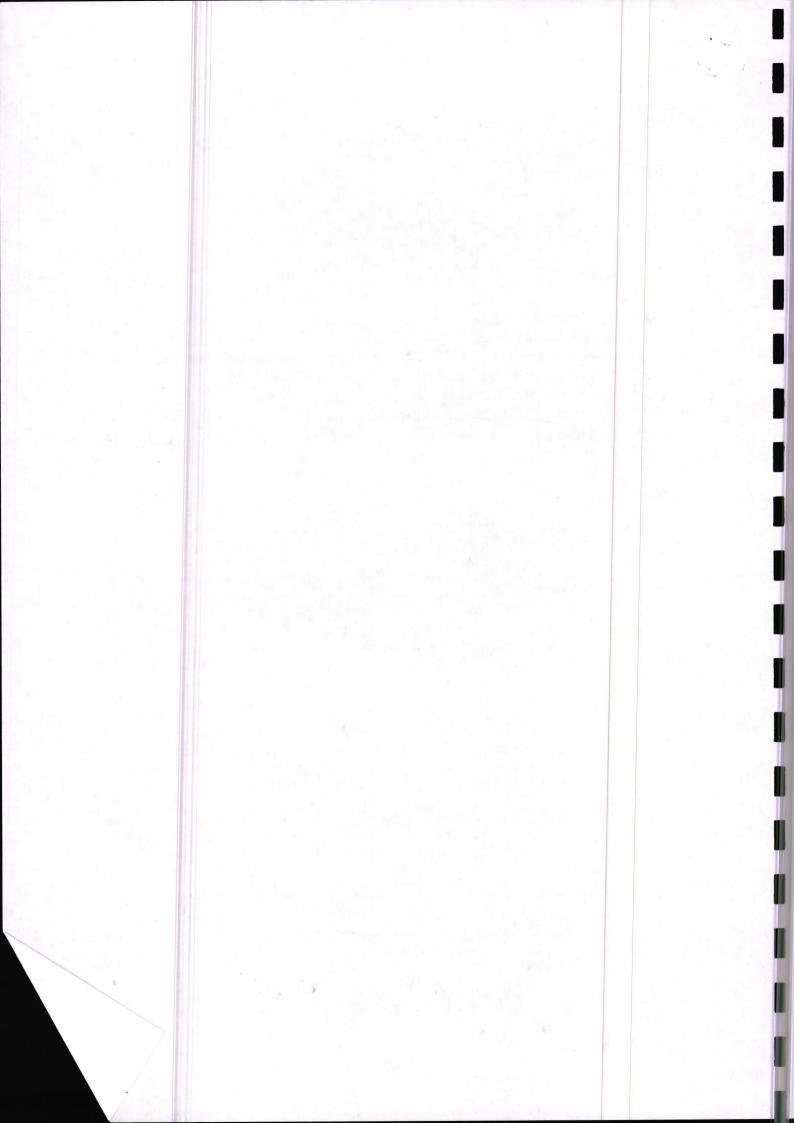
11. Taha H.A., Operations Research-An Introduction, PHI (2007)

- 12. S.S. Rao, Optimization Theory and Applications, Wiley Eastern Ltd, New Delhi.
- 13. Pant J. C., Introduction to optimization: Operations Research, Jain Brothers (2004)

E-learning resources

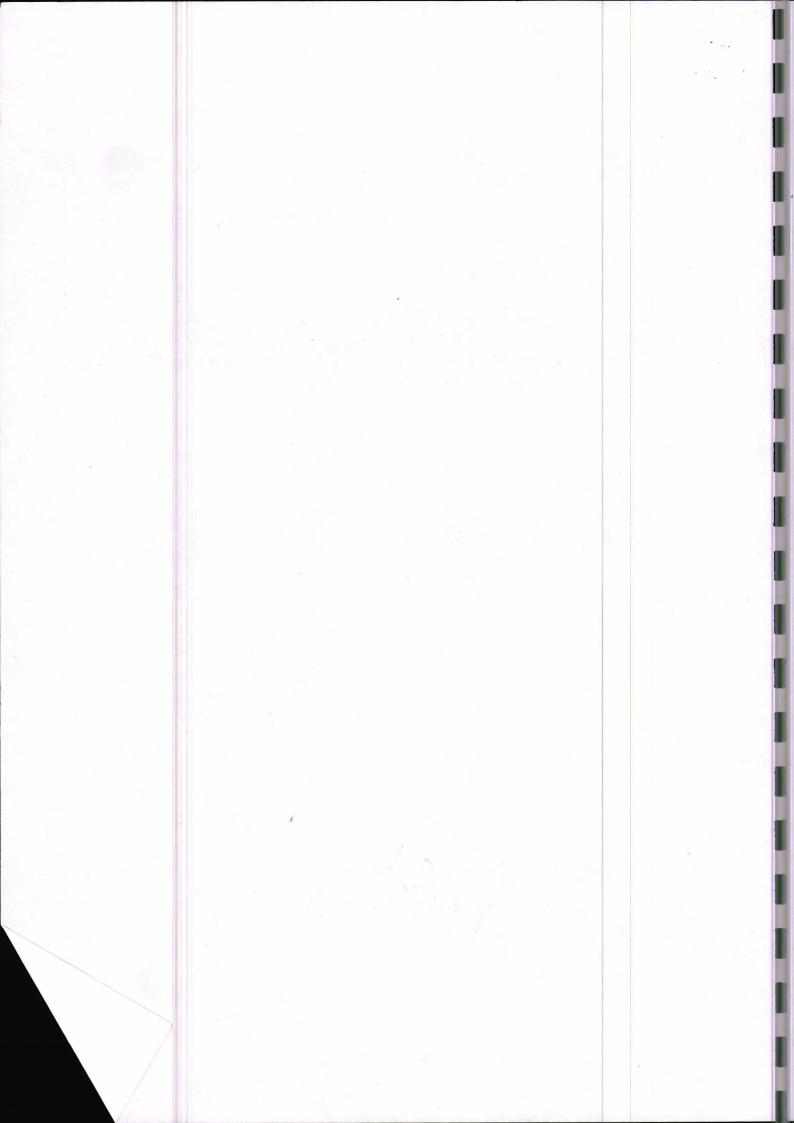

https://www.youtube.com/watch?v=yFprG0iJQUE

https://www.youtube.com/watch?v=z4aMBaTPW3I


https://www.youtube.com/watch?v=kavYLZatz44

https://www.youtube.com/watch?v=M mpRrGKKMo

Revertours



Course Name	epartment: Mathem General Relativity	L		Т		P
	and Cosmology					
Course Code	17070207	4		0		0
Type of Course	e (use tick mark)	Core ()	DSE ()	AEC ()	SEC	OE (
Pre-requisite (if any)		6. Frequency (use tick marks)	Even (✓)	Odd ()	(✓) Either Sem ()	Every Sem (
	of Lectures, Tutoria	ls, Practical				
ectures = 50		Tutorials = 0	Pr	actical = 0		
Course Descrip	otion:					
osmology. This contergy-Momentum Course Object the students shall b	e familiar with the f	al theory of relativ ending of light rays undamental princip	ity and Newt in a gravitat al of relativi	onian Theo ional field ty and cosn	ry olso dis	scuss abo
details	ion with tensors and	unrerential forms	They also w	in know abo	out Newton	nian theo
. Course Outcom	nes (COs):				1. J. J. M.	
ansformation of contraction of Tensor overlant derivative mmetry.	er of lectures = 15 oordinates, Tensors, sors and Quotient la e Intrinsic derivative	w. Riemannian me and Geodesics, R	s, Symmetri etric, Paralle iemann Chr.	c and Skew l transport istoffel curv	Christoffe ature tens	l symbo sor and
nit - 2 Numb	er of lectures = 15	Title of the unine Newtonian Th		heory of R	<mark>elativity</mark> a	nd
uivalence and ge	cial theory of relationeral covariance, C Einstein field equation	vity and the New Beodesic principle	tonian theory, Newtonia	n approxim	itation .Pr ation of	rincipal relativis
nit - 3 Numbe	er of lectures = 10	Schwarzschild	Solution an	d Planetar	y Orbits	- 2 m
neral relativity, Ad	nal solution and its is lvance of perihelion of spectral lines. Radar	of a planet. Bending	ry orbits and g of light rays	anologues o s in a gravita	of Kapler I ational fiel	law in <mark>d</mark> .
nit - 4 Numbe	er of lectures = 10	Title of the uni Energy –Mom			quation a	nd
	tensor of a perfect tensor of an electron	fluid. Schwarzsch	ild internal	solution, B		
		5.5		and the second design of the s		1

solu	ition
<mark>12.</mark>	Brief Description of self learning / E-learning component
http	s://www.youtube.com/watch?v=Y451f2xMzjA
http	s://www.youtube.com/watch?v=zH2RsBK7mUg
http	s://www.youtube.com/watch?v=z1AomGV0WHw
13.	Books Recommended
1.	CE Weatherburn, An Introduction to Riemannian Geometry and tensor calculus,, Cambridge University Press 950,
2.	H. Stepheni, General Relativity-An Introduction to the theory of the gravitational field, Cambridge University Press 1982.
3.	JV Nar liker, General Relativity and Cosmology, The Macmillan Company of India Ltd 1978.
4.	JV Nar liker, Introduction to Cosmology, Cambridge University Press 1993.
5.	S. Weinberg, Gravitation and Cosmology :Principles and application of general theory of relativity, John Wiley and Sons 1972

W Stelles

2.	Course Name	Fuzzy Sets & its Applications	L		Т	7		Р
3.	Course Code	17070208	4		0)	0	
4.	Type of Course	e (use tick mark)	Core ()	DSE (0	AEC ()	SEC	OE ()
5.	re-requisite (if any)		6. Frequency (use tick marks)	Even (✓)	Odd ()	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tutor	als, Practical					
Le	ctures = 50		Tutorials = 0		Pr	actical = 0		

This course provides the fundamentals of classical set theory and fuzzy set theory. The decomposition theorems of fuzzy sets and the extension principle will be introduced, as well as the use of nonlinear integrals as aggregation tools to deal with fuzzy data. As an indispensable tool in fuzzy decision making, ranking and ordering fuzzy quantities will be discussed.

9. Course Objectives:

To provide an understanding of the basic mathematical elements of the theory of fuzzy sets.

To provide an emphasis on the differences and similarities between fuzzy sets and classical sets theories.

To cover fuzzy logic inference with emphasis on their use in the design of intelligent or humanistic systems.

To provide a brief introduction to fuzzy arithmetic concepts.

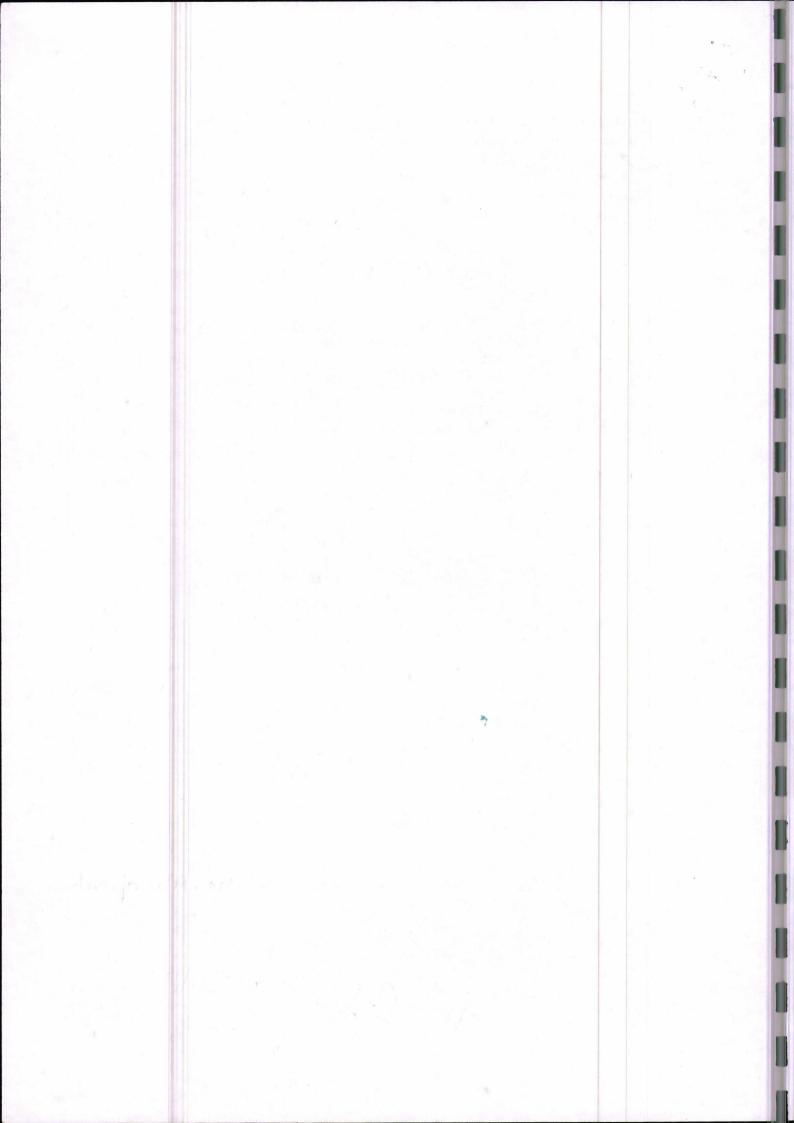
10. Course Outcomes (COs):

Objectives: Upon successful completion of this course, students should

- 1. be able to understand basic knowledge of fuzzy sets and fuzzy logic,
- 2. be able to apply fuzzy inferences,
- 3. be able to apply fuzzy information in decision making,
- 4. be able to appreciate the theory of possibility on the basis of evidences.

11. Unit wise detailed content

Unit-1 Number of lectures = 15 Title of the unit: Basic Fuzzy Sets


Basic definitions, α -level sets, comparison with classical (crisp) sets, Types of fuzzy sets, extension principle, Fuzzy complement, t-norms, t-co-norms, combination of operations, aggregation operations. Fuzzy numbers, linguistic variables, arithmetic operations on intervals, arithmetic operations on fuzzy numbers, lattice of fuzzy numbers, fuzzy equations.

Unit – 2 Number of lectures = 15 Title of the unit: Crisp versus fuzzy relation

Crisp versus fuzzy relation, projections and cylindrical extensions, binary fuzzy relations, binary relations on a single set, fuzzy equivalence relations, fuzzy compatibility and fuzzy ordering relations. Fuzzy measures, evidence theory, possibility theory, fuzzy sets and possibility theory. Max. Min Obegan

Unit – 3 Number of lectures = 10 Title of the unit: Fuzzy Logic

An overview of classical logic, multi valued logic, fuzzy propositions, fuzzy quantifiers, and linguistic hedges, Inference from conditional fuzzy propositions, Inference from conditional and qualified

Unit – 4 Number of lectures = 12 Applications

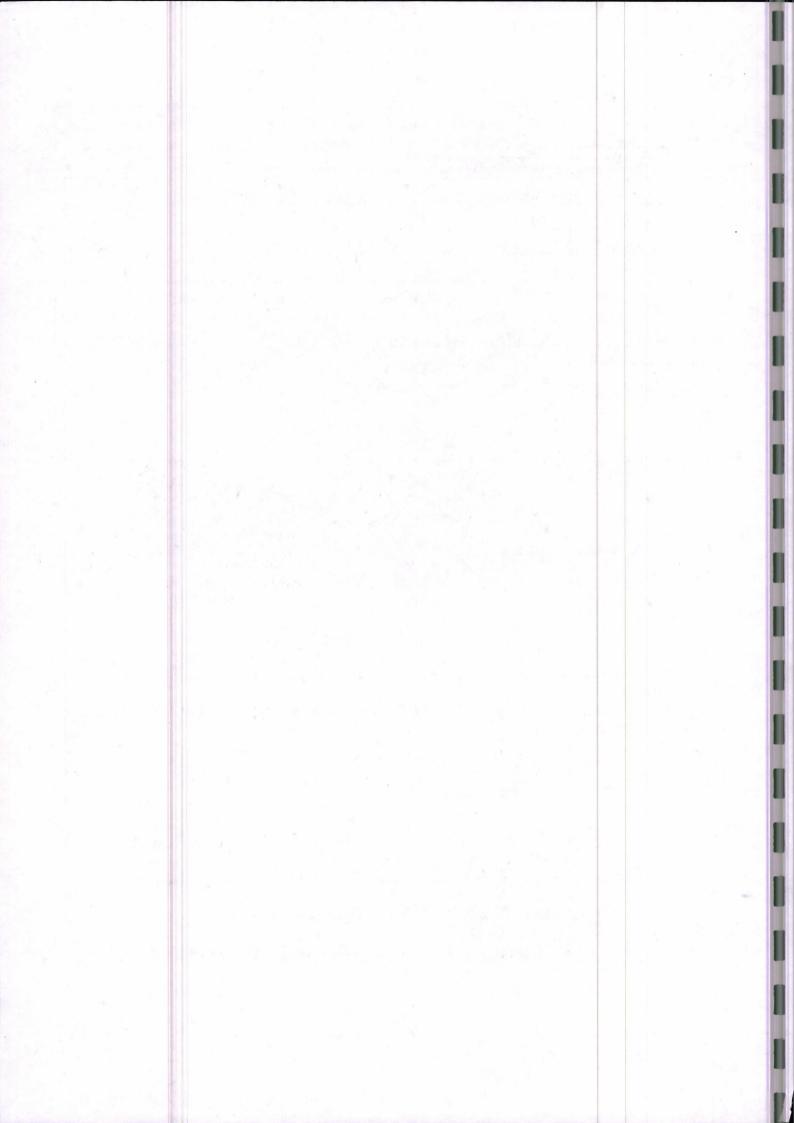
Individual, multiperson, multicriteria decision making, fuzzy ranking method, fuzzy linear programming. Methods of de-fuzzyfication and fuzzification, Mamdami model

12. Brief Description of self-learning / E-learning component

https://cours.etsmtl.ca/sys843/REFS/Books/ZimmermannFuzzySetTheory2001.pdf

https://www.worldscientific.com/worldscibooks/10.1142/2867#t=toc

https://www.tutorialspoint.com/fuzzy logic/fuzzy logic set theory.htm

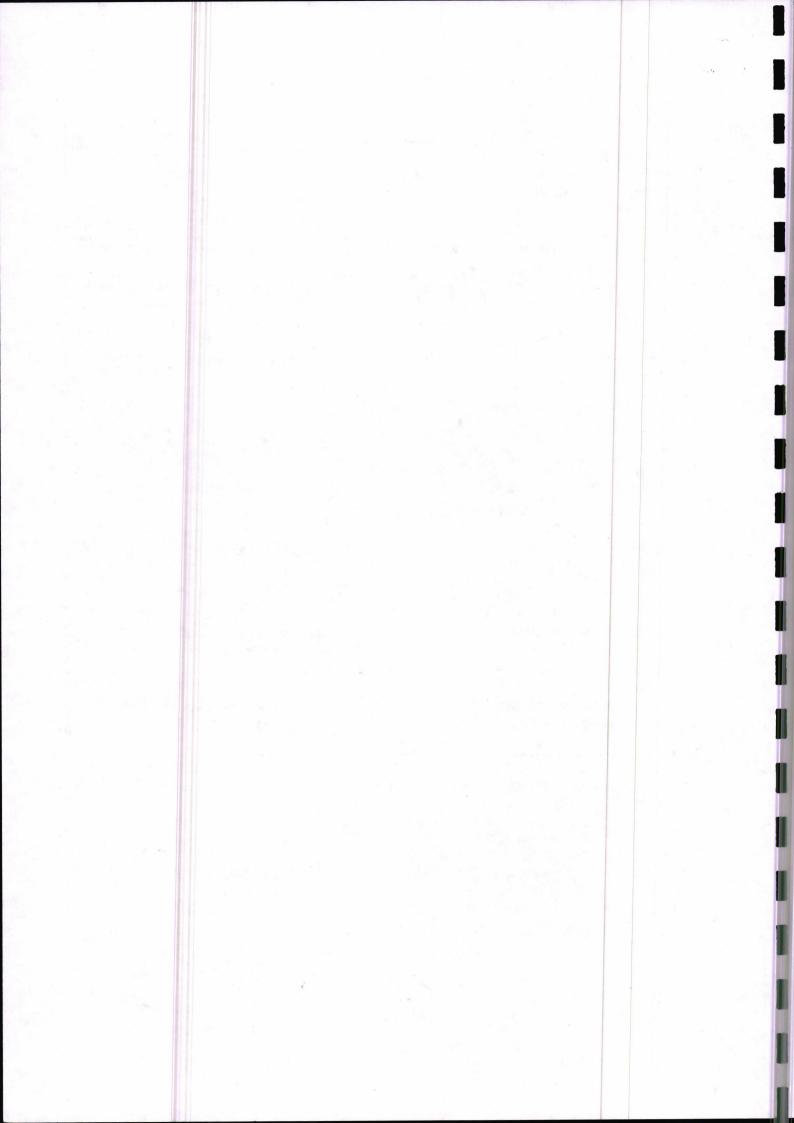

13. Books Recommended

- 1. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall of India, New Delhi.
- 2. Chandra Mohan, An Introduction to Fuzzy Set Theory and Fuzzy Logic, 2015, Viva Books Private Limited (2015)

5.2

New JUIN

- 3. H.J. Zimmermann, Fuzzy Set Theory & its Applications, Allied Publishers Ltd. New Delhi.
- 4. Timothy J. Ross, Fuzzy Logic with Engineering Applications, McGraw Hills inc. New Delhi

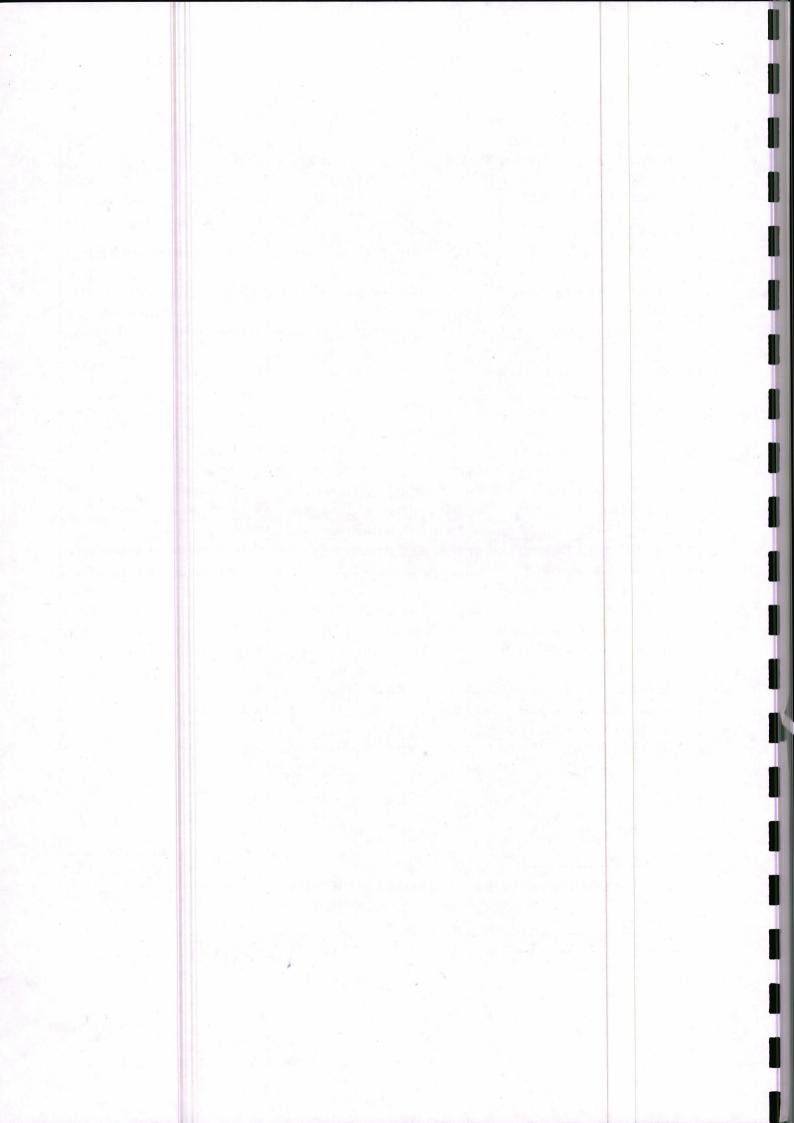

	Course	Linear	L		1	Г	1	P	
	Name	Algebra			<u></u>				
3.	Course Code	17070301	4		0			0	
4.	Type of Co mark)	ourse (use tick	Core (✓)	DSE	0	AEC ()	SEC ()	OE ()	
5.	Pre-		6. Frequency	Even	0	Odd (🗸)	Either	Every	
	requisite		(use tick				Sem ()	Sem (
	(if any)		marks)						
	the second s	ber of Lectures,	, Tutorials, Practical			1.1			
	ctures = 50		Tutorials =	0	Pra	ctical = 0	1		
8.	Course De	scription:							
Lir	near Algebra	cover the follow	ving points:						
	0								
1.	Matrices, I	Determinants and	Vector spaces						
		Determinants and nsformation and	Vector spaces Inner Product Spaces						
1. 2. 3.		nsformation and	-						
2.	Linear Tra Diagonaliz	nsformation and ation	-						
2. 3.	Linear Tra Diagonaliz Intoduction	nsformation and ation 1 to Bilinear and	Inner Product Spaces						
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol	nsformation and ation to Bilinear and Djectives:	Inner Product Spaces	edge Ar	nd Un	derstanding	g Of The C	Concepts	
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam	nsformation and ation n to Bilinear and pjectives: iliarize Students	Inner Product Spaces Quadratic Forms.						
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam Of Line	nsformation and ation n to Bilinear and <u>ojectives:</u> iliarize Students ar Algebra, Fund	Inner Product Spaces Quadratic Forms. With A Sound Knowl	Notatio	n An	d Its Calcula	ation Appl	lications.	
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam Of Line 2. To Mak The Fie	nsformation and ation n to Bilinear and ojectives: iliarize Students ar Algebra, Fund e Students Awar ld Of Matrices A	Inner Product Spaces Quadratic Forms. With A Sound Knowl lamentals Of Algebra, e Of Proficeiency In A nd Linear Spaces	Notatio Applying	n Ang Tecl	d Its Calcul hniques Fro	ation Appl m Linear	lications. Algebra,	
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam Of Line 2. To Mak The Fie 3. To Train	nsformation and ation n to Bilinear and Djectives: iliarize Students ar Algebra, Fund te Students Awar ld Of Matrices A n Skills Of Appli	Inner Product Spaces Quadratic Forms. With A Sound Knowl lamentals Of Algebra, e Of Proficeiency In A nd Linear Spaces cation Of Appropreiat	Notatio Applying te Techn	n Ang Tech	d Its Calcula hniques Fro s From Line	ation Appl m Linear	lications Algebra,	
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam Of Line 2. To Mak The Fie 3. To Train Real We	nsformation and ation n to Bilinear and ojectives: iliarize Students ar Algebra, Fund te Students Awar ld Of Matrices A n Skills Of Appli orld Problems, C	Inner Product Spaces Quadratic Forms. With A Sound Knowl lamentals Of Algebra, e Of Proficeiency In A nd Linear Spaces cation Of Appropreiat orrect Formulas And I	Notatio Applying te Techn Relation	n And g Tech iques s For	d Its Calcul hniques Fro s From Line Calculation	ation Appl m Linear . ear Algebra	lications. Algebra, a To	
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam Of Line 2. To Mak The Fie 3. To Train Real We 4. To Train	nsformation and ation n to Bilinear and ojectives: iliarize Students ar Algebra, Fund te Students Awar ld Of Matrices A n Skills Of Appli orld Problems, C	Inner Product Spaces Quadratic Forms. With A Sound Knowl lamentals Of Algebra, e Of Proficeiency In A nd Linear Spaces cation Of Appropreiat	Notatio Applying te Techn Relation	n And g Tech iques s For	d Its Calcul hniques Fro s From Line Calculation	ation Appl m Linear . ear Algebra	lications. Algebra, a To	
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam Of Line 2. To Mak The Fie 3. To Train Real Wo 4. To Train Spaces	nsformation and ation n to Bilinear and Djectives: iliarize Students ar Algebra, Fund te Students Awar ld Of Matrices A n Skills Of Appli orld Problems, C n Solving Problem	Inner Product Spaces Quadratic Forms. With A Sound Knowl lamentals Of Algebra, e Of Proficeiency In A nd Linear Spaces cation Of Appropreiat orrect Formulas And I ms And Exercises Con	Notatio Applying te Techn Relation ncerning	n And Tech iques s For Vect	d Its Calcul hniques Fro s From Line Calculation tors, Matric	ation Appl m Linear ear Algebra 18 es, And Li	lications Algebra, a To inear	
2. 3. 4.	Linear Tra Diagonaliz Intoduction Course Ol 1. To Fam Of Line 2. To Mak The Fie 3. To Train Real We 4. To Train Spaces 5. To Fam	nsformation and ation n to Bilinear and ojectives: iliarize Students ar Algebra, Fund te Students Awar ld Of Matrices A n Skills Of Appli orld Problems, C n Solving Problem	Inner Product Spaces Quadratic Forms. With A Sound Knowl lamentals Of Algebra, e Of Proficeiency In A nd Linear Spaces cation Of Appropreiat orrect Formulas And I	Notatio Applying te Techn Relation ncerning	n And Tech iques s For Vect	d Its Calcul hniques Fro s From Line Calculation tors, Matric	ation Appl m Linear ear Algebra 18 es, And Li	lications Algebra, a To inear	

On Completion Of The Course The Student Shall Be Able To:

- 1. Be Able To Give An Account Of And Use Basic Vector Space Concepts Such As Linear Space, Linear Dependence, Basis, Dimension, Linear Transformation;
- 2. Be Able To Give An Account Of And Use Basic Concepts In The Theory Of Finite Dimensional Euclidean Spaces;
- 3. Be Familiar With The Concepts Of Eigenvalue, Eigenspace And Eigenvector And Know How To Compute These Objects;
- 4. Know The Spectral Theorem For Symmetric Operators And Know How To Diagonalise

5.2

2/6/11


Quadratic Forms In ON-Bases;

- 5. Know How To Solve A System Of Linear Differential Equations With Constant Coefficients;
- 6. Be Able To Formulate Important Results And Theorems Covered By The Course;
- 7. Be Able To Use The Theory, Methods And Techniques Of The Course To Solve Mathematical Problems;

Unit – 1	Number of lectures = 10	Title of the unit: Matrices, Determinants and Vector spaces
Matrices:	Elementary matrices, inve	rtible matrices, Gauss-Jordon method, determinant,
		amer's Rule. Vector spaces: Fields, Vector spaces
	eld, subspaces, Linear inc es, dimension.	dependence and dependence, existence of basis
Unit-2	Number of lectures = 15	Title of the unit: Linear Transformation and Inner
		Product Spaces
Linear Tr	ansformations: Rank Nullit	ty Theorem, isomorphism, matrix representation of
linear tra	nsformation, change of b	basis, similar matrices, linear functional and dua
space.	Inner product spaces:	Cauchy-Schwarz's inequality, Gram-Schmid
orthonorn	nalization, orthonormal bas	sis, orthogonal projection, projection theorem, fou
fundamer	tal subspaces and their re	lations (relation between null space and row space
relation b		anspose and the column space).
Unit – 3	Number of lectures = 15	Title of the unit: Diagonalization
-	-	igenvectors, diagonalizability, Invariant subspaces
		itary and self adjoint operators, Schur's Lemma
-		s, spectral decompositions and spectral theorem
		Cayley-Hamilton theorem, primary decomposition
theorem,	Jordon canonical form, min	
Unit – 4	Number of lectures = 10	Title of the unit: Intoduction to Bilinear and
		Quadratic Forms.
		tic forms: Bilinear and quadratic forms, Sylvester's
law of		ns: Lagrange interpolation, LU,QR and SVE
		ns, least square fittings, pseudo inverses.
	Description of self learning /	
	//home.iitk.ac.in/~arlal/book/nr	
and the second	//www.maths.qmul.ac.uk/~pjc/i	
		stoll/lecture-notes/LinearAlgebral.pdf
4. <u>https</u>	://www.cs.cornell.edu/courses/	cs485/2006sp/LinAlg_Complete.pdf
13. Books	Recommended:	
		Linear Algebra, PHI publication.
	ert Strong. Linger Alashra and	

- 2. Gilbert Strang: Linear Algebra and Its Applications, 4th edition.
- 3. Sheldon Axler: Linear Algebra Done Right, UTM, Springer.

P S.>

1. Na	ame of the De	partment: Mathe	matics				
2. C	ourse Name	Topology	L T		Р		
3. C	ourse Code	17070302	4	0 0		0	
4. Ty	ype of Course	(use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
	re-requisite f any)		6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7. To	otal Number of	of Lectures, Tutor	rials, Practical				
Lectu	res = 50		Tutorials = 0		Practical = 0		
0 0	D .						

8. Course Description:

The course unit aims to introduce the basic ideas of Topological spaces. This course is designed as a basic introductory course in the analysis of metric.

9. Course Objectives:

The objectives of this course are to:

- 1. To introduce students to the concepts of open and closed sets not necessarily only on the real line approach.
- 2. To introduce the students about applications of above to proving continuous functions.
- 3. To introduce the students how to generate new topologies from a given set with bases.
- 4. To provide the awareness of tools for students to carrying out advanced research work in Pure mathematics.

10. Course Outcomes (COs):

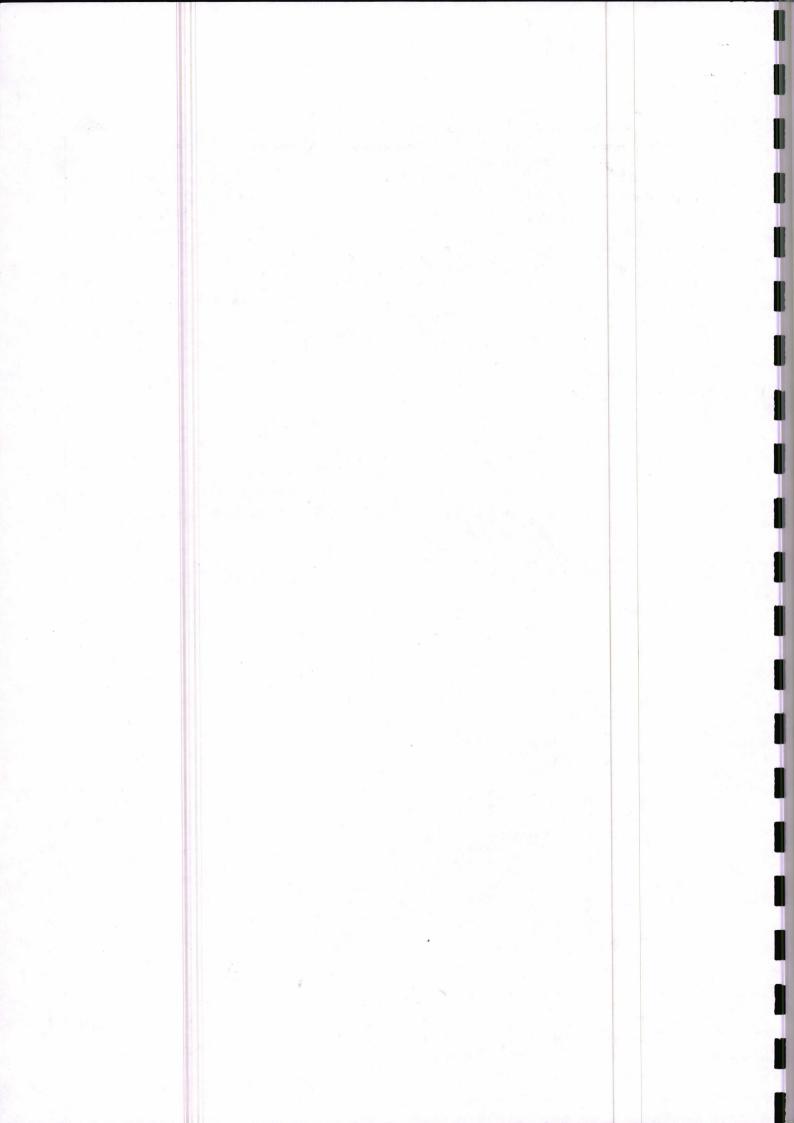
Upon successful completion of this course, the student will be able to:

- 1. distinguish among open and closed sets on different topological spaces;
- 2. Know the two fundamental topologies: discrete and indiscrete topologies.
- 3. identify precisely when a collection of subsets of a given set equipped with a topology forms a topological space;
- 4. understand when two topological spaces are homeomorphic
- 5. identify the concepts of distance between two sets; connectedness, denseness, compactness and separation axioms

11. Unit wise detailed content

Unit-1	Number of lectures = 15	Title of the unit: Topological Space
Unit-1	Number of lectures $= 15$	Title of the unit: Topological Space

Definition and examples of topological space, Door space, Closed sets, Closure, Dense subset, Neighborhoods, interior, exterior, boundary and accumulation points, Derived sets, Bases and sub-bases, Subspaces, product spaces and relative topology.


Unit – 2 Number of lectures = 10 Title of the unit: Continuous Functions & Connectedness

Continuous functions, homeomorphisms, the pasting lemma, properties of continuous functions, open & closed mappings, Connected and disconnected sets, connectedness on the real line, components, locally connected spaces.

New Stills Se

Unit – 3 Number of lectures = 10 Title of the unit: Compactness

6 S.7

Compactness – Continuous functions and compact sets, basic properties of compactness, compactness and finite intersection property, sequentially and countably compact sets, local compactness.

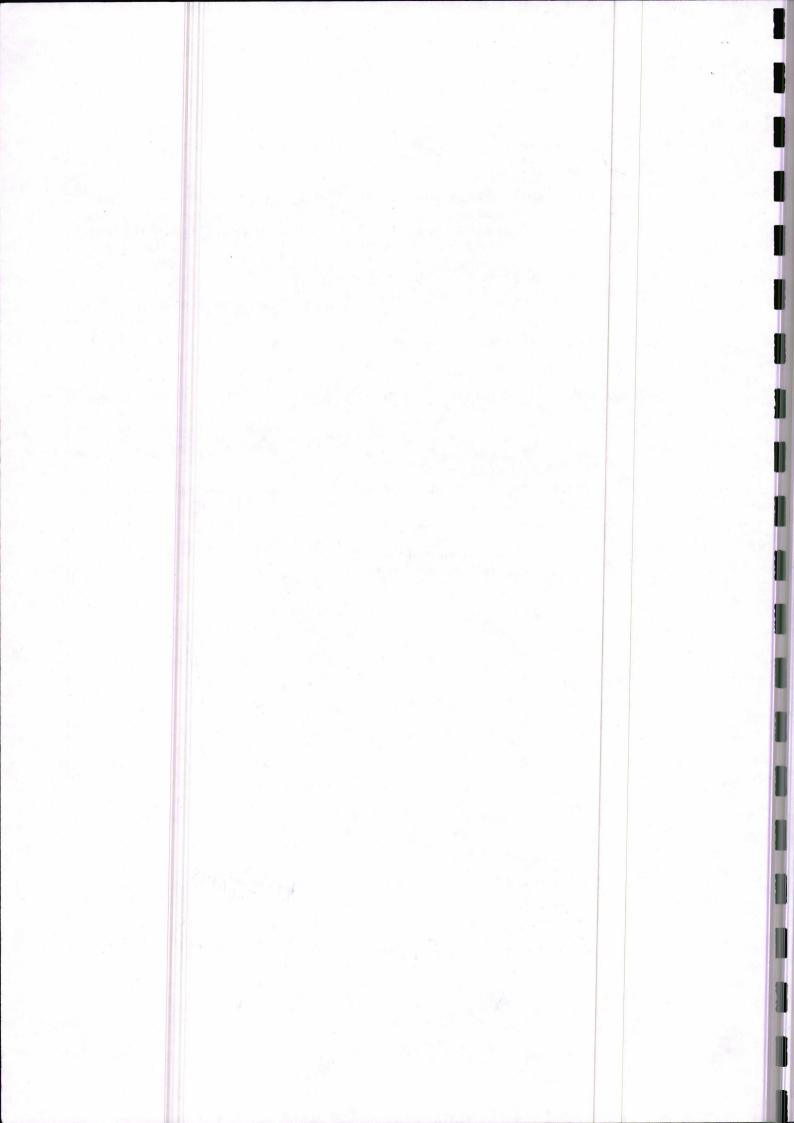
Unit – 4 Number of lectures = 15 Title of the unit: Separation Axioms

First countable space, second countable space and Separable space, Lindelof's theorems Separation axioms – T_0 , T_1 , T_2 , T_3 , $T_3_{\frac{1}{2}}$, T_4 , their characterizations and basic properties. Urysohn's lemma and Teitze extension theorem, Statement of Urysohn's metrization theorem, Statements of Tychonoff's product theorem and Stone-cechcompactification theorem.

12. Brief Description of self-learning / E-learning component

https://wolfweb.unr.edu/homepage/jabuka/Classes/2009_spring/topology/Notes/02%20%20Topological% 20spaces.pdf

http://www.math.muni.cz/~koren/EssentialTopology.pdf


http://home.iitk.ac.in/~chavan/topology_mth304.pdf

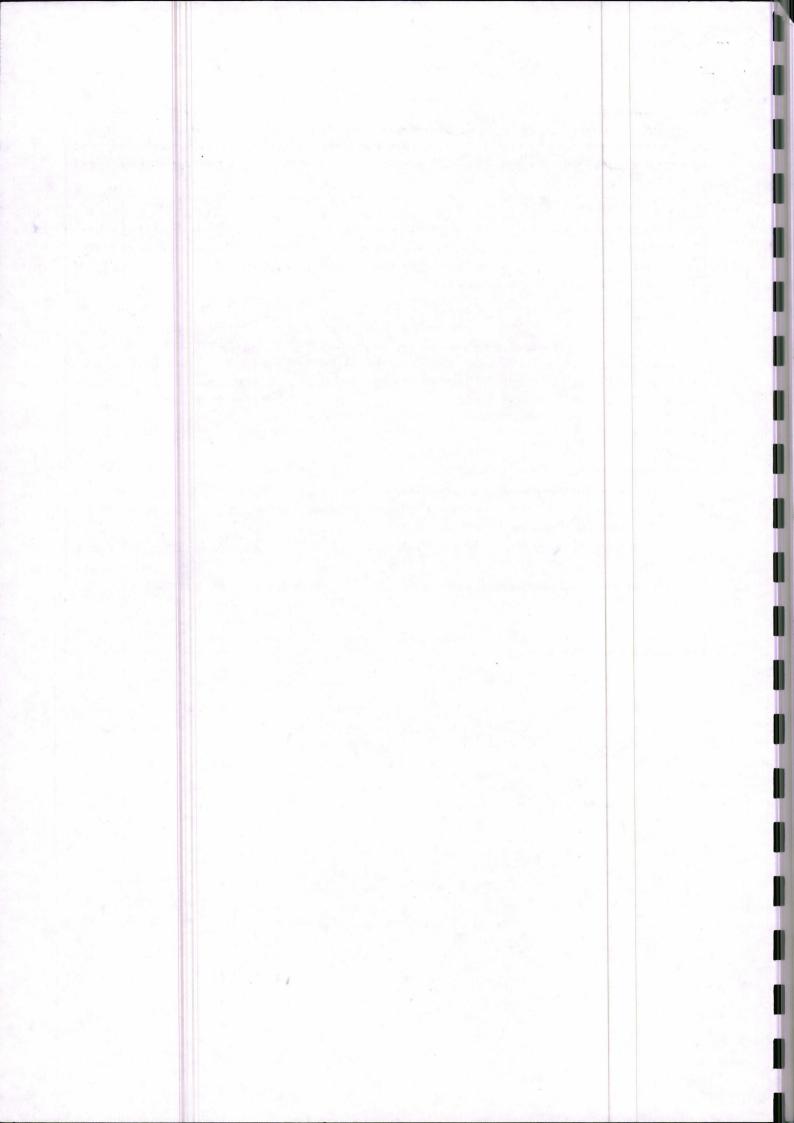
http://nptel.ac.in/courses/111106054/Chapter3.pdf

13. Books Recommended:

- 1. J. R. Munkres, Topology, A First Course, PHI Pvt. Ltd., N. Delhi, 2000.
- 2. Misney A. Morris, "Topology without Tears, 2011.
- 3. S. Willard, General Topology, Addison-Wesley, Reading, 1970.
- 4. W. J. Pervin, Foundations of General Topology, Academic Press Inc., New York, 1964.
- 5. J. Dugundji, Topology, Allyn and Bacon, 1966 (Reprinted in India by PHI).
- 6. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill Book Company, 1963.
- 7. K.P. Gupta, Topology, Pragati Prakashan, 2015.
- 8. K D Joshi, Introduction to General Topology, Wiley Eastern Ltd., 1983

10-2-6119

1. Name of the D	epartment: Mathen	natics	1.			
2. Course Name	Statistical	L	Т		Р	
	Inference				A State of March	
3. Course Code	17070303	4	0		0	
	e (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requisite		6. Frequency	Even ()	Odd	Either	Every
(if any)		(use tick marks)			Sem ()	Sem
	of Lectures, Tutoria					
Lectures = 50 8. Course Descri		Tutorials = 0	Pract	ical = 0		
analysis techniques Fopic includes:Poi ikelihood, unbiase	in the areas of point and in the stimation and in dness, consistency, e	asic theory behind the de and interval estimation, a aterval methods, includin efficiency and sufficiency and related confidence	s well as hyng method y, hypothes	pothesis to of mome	esting. nts and n	naximu
O. Course Objec	tives:			4	<u>}</u>	
Jpon successful co	mpletion of this cours	se:				
 variety of disc. variety of disc. The students sinference Further, the st sizes and asymmetry. Lastly, the students Course Outcom Upon successful con Explain the no Explain and a 	rete and continuous p hould be familiar wit udent can evaluate th uptotically as the samp dent has insight in how mes (COs): mpletion of this cours tion of a parametric m pply approaches to in	stimators, hypothesis test robability models. h the common probabilit e properties of these esti- ple size tends to infinity. w to construct optimal esti- se, students should have t nodel and point estimation nclude a measure of accu- te area of interval estimat	y distribution imators and timators and the knowled n of the part uracy for est	ons that ar I tests, for d tests Ige and ski	e used in s both finit lls to: f those mo	statistic e samp dels.
	sibility of pre-specifi	ied ideas about the paran		model by	examining	the are
		parametric statistics, who y dependent on the spec				
11. Unit wise deta					1	Lang Million
Unit-1 Numb	er of lectures = 10	Title of the unit: Theo	ry of Estin	nation	1 second	
		of a good estimator - un nod of maximum likeliho				ency an
		Title of the unit: Testi				le Test
		C.>>	Ner	2/6/19	J.	ne rest


I

I

I

I

ł

Statistical hypothesis, Null and alternative hypotheses, simple and composite hypotheses, critical region, level of significance, one tailed and two tailed tests, two types of errors, Neyman-Pearson lemma, large sample tests for single mean, single proportion, difference between two means and two proportions and related confidence intervals

Unit - 3 Number of lectures = 15 Title of the unit: Testing of Hypothesis (Small Sample Test)

Definition of Chi-square statistic, Chi-square tests for goodness of fit and independence of attributes. Definition of Student's't' and Snedecor's F-statistics, testing for the mean and variance of univariate normal distributions, testing of equality of two means and two variances of two unilabiate normal distributions and related confidence intervals.

Unit - 4 Number of lectures = 15 Title of the unit: Non Parametric Test

Non Parametric Tests: One sample and paired sample problems, Sign Test, Wilcoxon Signed ranked test and their comparison, Wald-Wolfwitz Run test, Mann Whiteney-U test, Median test.

12. Brief Description of self learning / E-learning component

http://nptel.ac.in/courses/111105043/

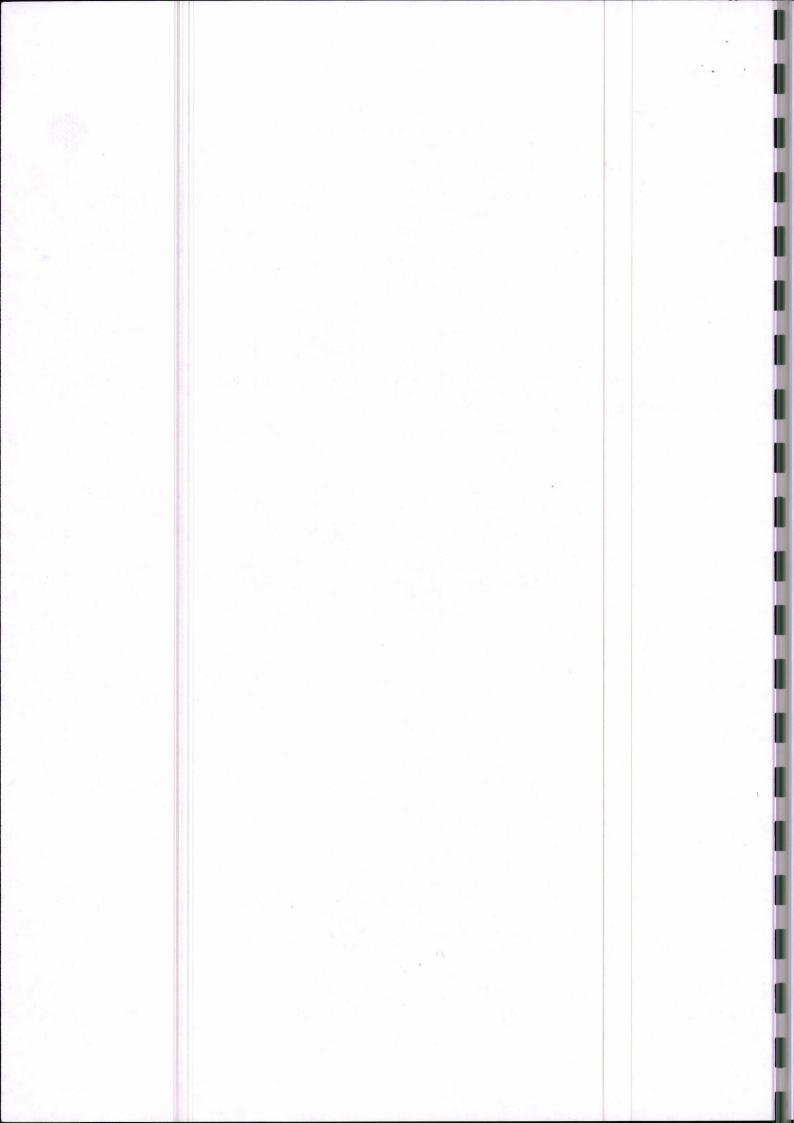
https://www.youtube.com/watch?v=iin6vthyzsQ&list=PLbMVogVj5nJRkNUH5v9qNEJvW7r2A7rEY

https://www.youtube.com/watch?v=IEP3swFeauE

13. Books Recommended

1. Lehman, E.L., Testing of Statistical Hypothesis, Wiley Eastern Ltd, 1959

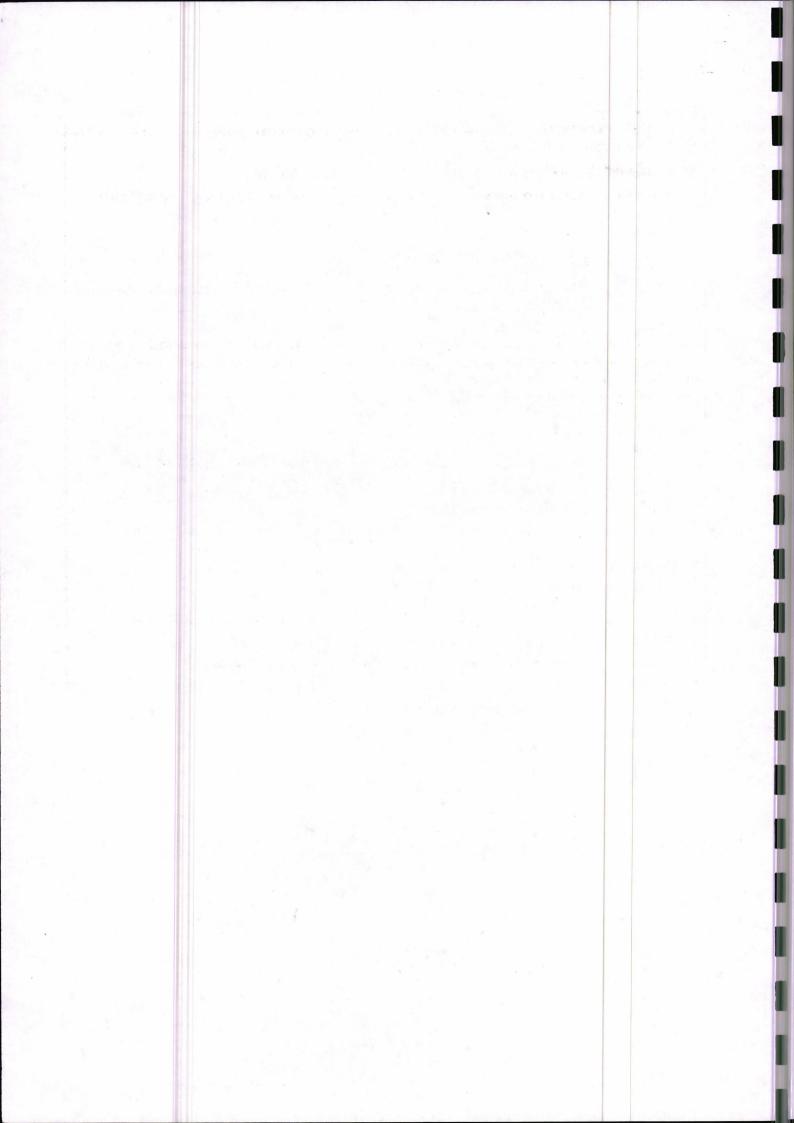
2. Lehman, E.L., Point Estimation, John Wiley & sons 1984


3. Rohatgi, V.K., Statistical Inference, Dover Publications 2011

4. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, S. Chand Pub., 2014

5. Gibbons, J.D., Non-parametric Statistical Inference, McGraw Hill Inc. 1971

6. A.M. Goon, M.K. Gupta, and B. Das Gupta, Fundamentals of Statistics, Vol-II.


Ner Folus p C.b

	Course Name	Statistical Inference Lab	L	Т		Р 4	
3. (Course Code	17070304	0	0			
4. Type of Course (use tick mark)		Core ()	DSE (✓)	AEC ()	SEC ()	OE ()	
(Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem (
		of Lectures, Tutor					
	ures = 0		Tutorials = 0	Pract	tical =35		
<mark>8. (</mark>	Course Descrip	tion:					
			basic theory behind the de				statistica
inaly	sis techniques i	in the areas of point	and interval estimation, a	s well as hy	pothesis to	esting.	
Copic	c includes:Poin	t estimation and i	nterval methods, includin	ng method	of mome	nts and n	naximur
ikeli	hood, unbiased	ness, consistency,	efficiency and sufficiency	y, hypothes	sis testing	methods i	ncludin
baran	netric and nonp	arametric approach	es and related confidence	interval.			
). (Course Object	ives:					
Jpon	successful con	npletion of this cou	rse:				
5. 7	The students sh	ould be familiar wi	th the concept of statistical	l inference	and has kr	owledge a	about th
C	construction of	point and interval e	estimators, hypothesis testi	ing and inte	erval estim	ation unde	r a larg
N N	variety of discre	ete and continuous	probability models.				Ŭ
5. 7	The students sh	ould be familiar wi	th the common probability	v distributi	ons that ar	e used in s	tatistica
	inference		en e				
7. 1	Further, the stu	dent can evaluate t	he properties of these esti	mators and	tests for	both finit	e sampl
			ple size tends to infinity.	indicite diffe		oour mint	c sumpr
	-	· · · · · · · · · · · · · · · · · · ·	w to construct optimal est	imators an	d tests		
	Course Outcom				<u>u 10313</u>		
10. C							
	successful con		rse, students should have the	he knowled	lge and ski	lls to:	
Jpon		npletion of this cour	rse, students should have the model and point estimation		-		dels.
Upon 5. I	Explain the noti	pletion of this courses on of a parametric	model and point estimation	n of the par	ameters of	those mo	
Upon 5. I 5. I	Explain the noti Explain and app	pletion of this cour on of a parametric ply approaches to i	model and point estimation nclude a measure of accu	n of the par racy for est	ameters of	those mo	
Upon 5. I 5. I	Explain the noti Explain and app confidence in th	pletion of this course on of a parametric ply approaches to i them by examining t	model and point estimation nclude a measure of accu he area of interval estimati	n of the par racy for es on.	ameters of stimation p	those mo	and ou
Upon 5. H 5. H 6.	Explain the noti Explain and app confidence in the Asses the plaus	npletion of this count on of a parametric ply approaches to it tem by examining the top it it is the top it it is the top it is	model and point estimation nclude a measure of accu	n of the par racy for es on.	ameters of stimation p	those mo	and ou
Upon 5. I 5. I 7. <i>I</i>	Explain the noti Explain and app confidence in the Asses the plaus of hypothesis te	npletion of this courses on of a parametric ply approaches to it tem by examining the ibility of pre-specific sting.	model and point estimation nclude a measure of accu he area of interval estimati fied ideas about the param	n of the par tracy for eson. on. teters of a p	cameters of stimation p model by e	those mo rocedures examining	and ou the area
Upon 5. H 5. H 7. A 7. A 8. H	Explain the noti Explain and app confidence in th Asses the plaus of hypothesis te Explain and app	npletion of this count on of a parametric ply approaches to it tem by examining the ibility of pre-specific sting, ply the idea of non	model and point estimation nclude a measure of accu he area of interval estimati	n of the par tracy for eson. teters of a particular	ameters of stimation p model by e ation and a	those more rocedures examining nalysis te	and ou the are chnique
Upon 5. I 5. I 7. <i>I</i> 6 7. <i>I</i> 6 8. I 8 8. I	Explain the noti Explain and app confidence in the Asses the plaus of hypothesis te Explain and app are developed to model.	npletion of this count on of a parametric ply approaches to it tem by examining the ibility of pre-specific sting, ply the idea of non	model and point estimation nclude a measure of accu he area of interval estimati ied ideas about the param -parametric statistics, whe y dependent on the spec	n of the par tracy for eson. teters of a particular	ameters of stimation p model by e ation and a	those more rocedures examining nalysis te	and ou the area

Nev Floris

\$ C.S

Practical Based on Syllabus: Programming in "C" or Applying software packages for problems based on Theory paper Statistical Inference (08030305).

Use of Statistical Software packages such as MINITAB, SPSS, Statgraf etc.

Practical Exercises for Statistical techniques based on topics in paper Statistical Inference (08030305). Note:

1. At least eight experiments are to be performed in the semester.

 At least three experiments are based on Software and remaining experiments are based on conventional methods.

3. At least six experiments should be performed from the above list. Remaining two experiments may either be performed from the above list or designed & set by the department as per the scope of the syllabus.

12. Brief Description of self learning / E-learning component

http://nptel.ac.in/courses/111105043/

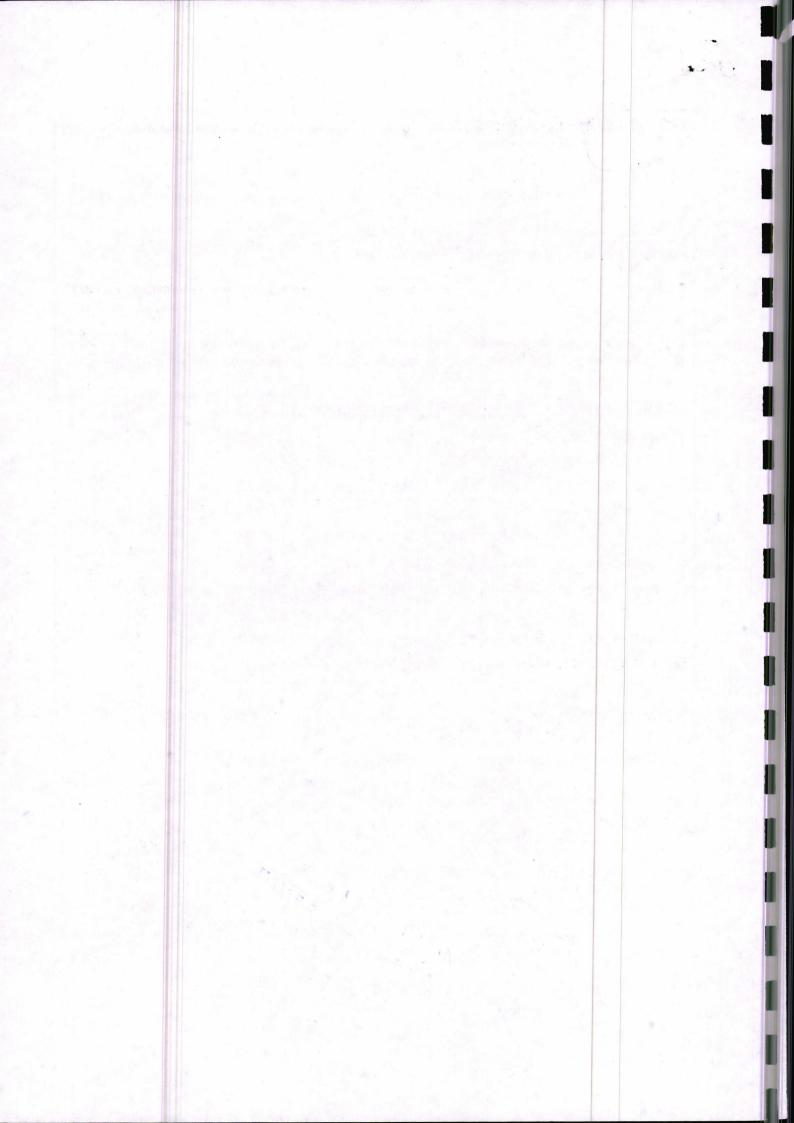
https://www.youtube.com/watch?v=iin6vthyzsQ&list=PLbMVogVj5nJRkNUH5v9qNEJvW7r2A7rEY

https://www.youtube.com/watch?v=IEP3swFeauE

13. Books Recommended

7. Lehman, E.L., Testing of Statistical Hypothesis, Wiley Eastern Ltd, 1959

8. Lehman, E.L., Point Estimation, John Wiley & sons 1984


9. Rohatgi, V.K., Statistical Inference, Dover Publications 2011

10. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, S. Chand Pub., 2014

11. Gibbons, J.D., Non-parametric Statistical Inference, McGraw Hill Inc. 1971

12. A.M. Goon, M.K. Gupta, and B. Das Gupta, Fundamentals of Statistics, Vol-II.

Lever 16119

1.	Name of the	Department: N	lathematics					
2.	Course Name	Numerical Analysis and its Applications	L			Т		Р
3.	Course Code	17070305	4			0		0
4.	Type of Cou mark)	rse (use tick	Core (✓)	DSE	0	AEC ()	SEC ()	OE ()
5.	Pre- requisite (if any)		6. Frequency (use tick marks)	Even	0	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Numb	er of Lectures,	Tutorials, Practical					
Le	ctures = 50		Tutorials = (Pra	actical = 0		Trading Street

8. Course Description:

Numerical Analysis and its Applications cover the following points:

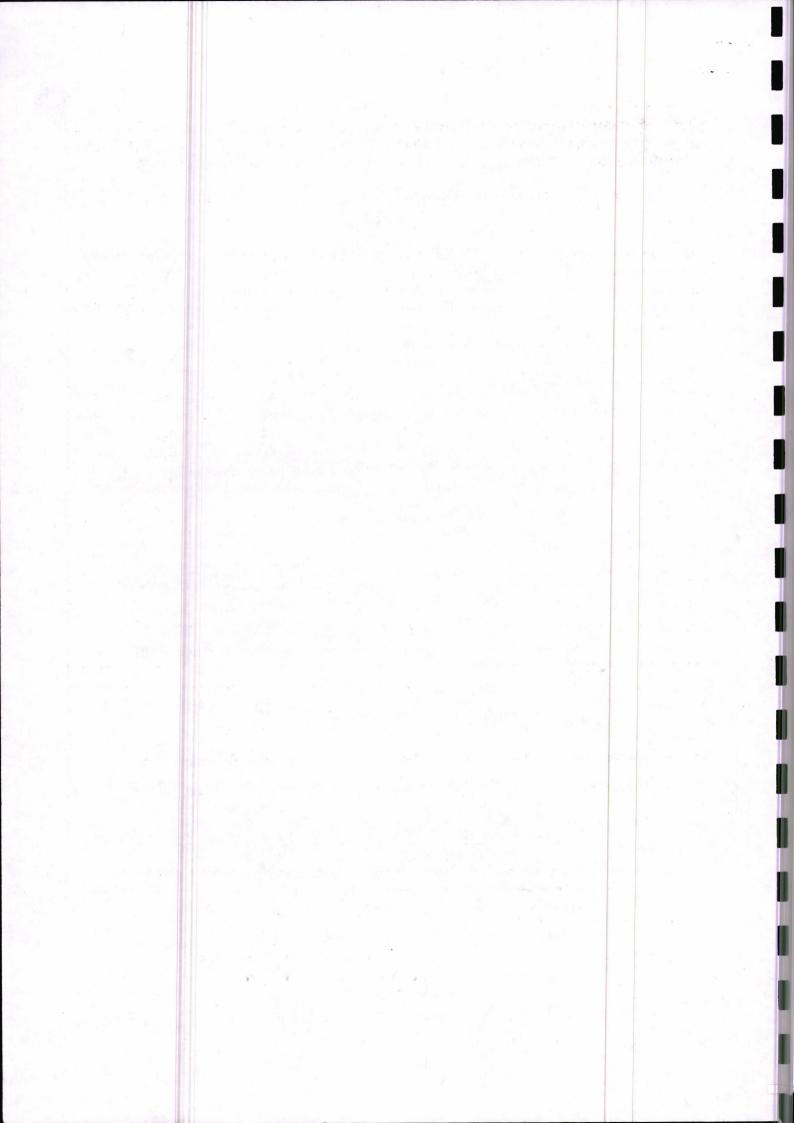
- 5. Basics of Numerical Analysis
- 6. System of Linear Algebraic Equations and Eigen Value Problems
- 7. Numerical Solution Of Ordinary Differential Equations
- 8. Numerical Solution Of Partial Differential Equations

9. Course Objectives:

Numerical Methods is a powerful problem solving tools in it student is capable to solve different problems analytically like Linear Equations, ODE, PDE, Differentiations and Integrations, Interpolation.

10. Course Outcomes (COs):

On completion of this course students will able to:


- 8. Student will know about the Basics of Numerical Analysis
- 9. Student will be able to understand System of Linear Algebraic Equations and Eigen Value Problems
- 10. Student will be able to understand Numerical Solution Of Ordinary Differential Equations

11. Student will be able to understand Numerical Solution Of Partial Differential Equations .

11. Unit wise detailed content

Unit – 1Number of lectures = 10Title of the unit: Basics of Numerical AnalysisFinite difference operators, Basics of Numerical Differentiation and Integration, Relaxation
method and its convergence, Muller's method for complex and multiple roots, Cubic Spline,
Romberg's Integration, Richardson's Extrapolation.

Unit-2	Number of lectures = 10	Title of the unit: System of Linear Algebraic Equations and Eigen Value Problems
		al new Statis
	R	
	Qr.	A

Direct Methods, Error Analysis for Direct Methods, Eigen Values and Eigen vectors, Bounds on Eigen Values, Jacobi, Givens and Housholder's Methods for Symmetric Matrices, Rutishauser Method for Arbitrary Matrices, Power and Inverse Power methods, Choice of a Method.

Unit – 3	Number of lectures = 15	Title of the unit: Numerical Solution Of Ordinary
		Differential Equations

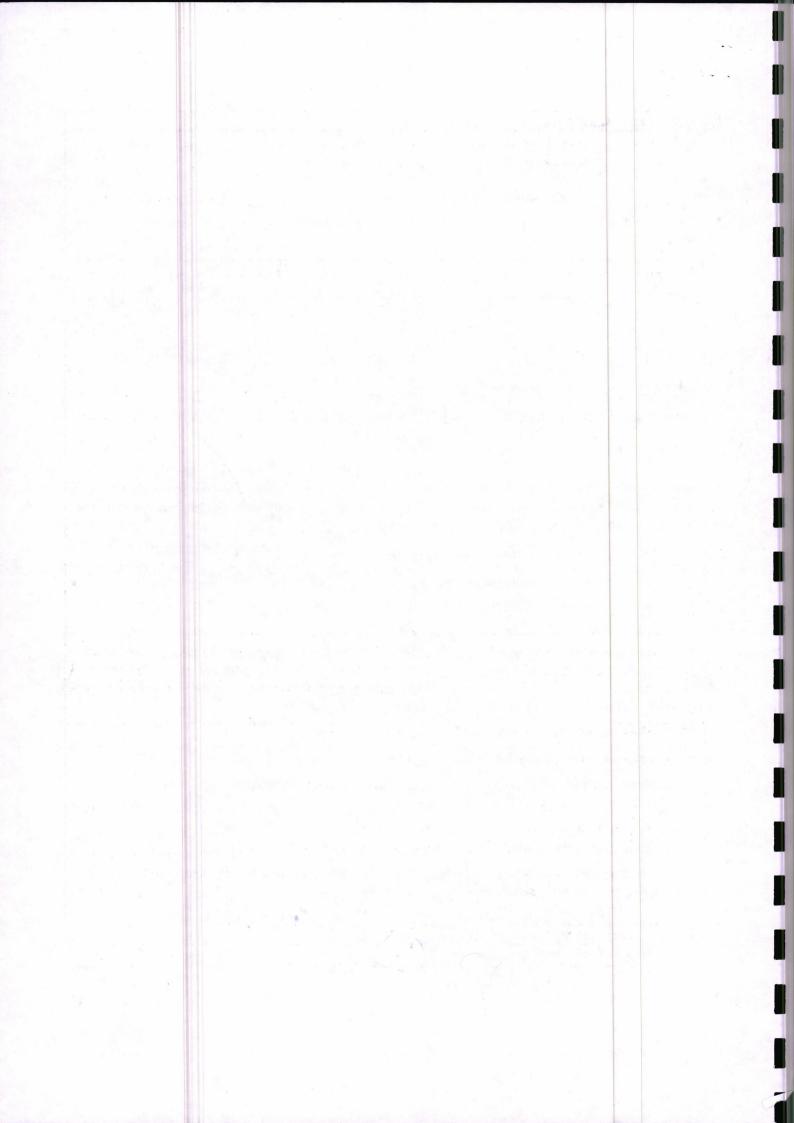
Introduction. Runge Kutta methods derivation, error bounds and error estimates. Weak stability theory for Runge Kutta methods. Order and convergence of the general explicit one step methods. Linear multi step methods derivation, order consistency, zero stability and convergence. Weak stability theory for general linear multi step methods. Predictor Corrector methods, Stiff systems.

Unit – 4	Number of lectures = 15	Title of the unit: Numerical Solution Of Partial	
		Differential Equations	

Basic linear algebra vector and matrix norms and related theorems. Parabolic equations in one and two space dimensions explicit and implicit formulae. Consistency, stability and convergence. Iterative methods for linear systems. Split operator methods. Multilevel difference schemes. Nonlinear equations. Elliptic Equations Dirichlet, Neumann and mixed problems. Direct factorization methods and successive over relaxation (S.O.R.). ADI and conjugate gradient methods. Hyperbolic equations. First order hyperbolic systems in one and two space dimensions stability and convergence. Second order equations in one and two space dimensions. The Galerkin method and applications.

12. Brief Description of self learning / E-learning component

www.youtube.com/watch?v=QQFIWwDA9NM&index=4&list=PLbMVogVj5nJRILpJJO7KrZa8Ttj4_ZAgl


www.youtube.com/watch?v=rMC6yvc7a6s&list=PLbMVogVj5nJRILpJJO7KrZa8Ttj4_ZAgl&index=27

www.youtube.com/watch?v=9YWjoiE4Wck&list=PLbMVogVj5nJRILpJJO7KrZa8Ttj4_ZAgl&index=33

13. Books Recommended:

- 1. B.S. Grewal, "Numerical Methods in Engineering & Science", Khanna Publication, Ed. 9th.
- 2. E. Balagurusamy, "Numerical Method", Tata McGraw Hill Publication.
- 3. S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI learning Pvt. Ltd.
- 4. Curtis F. Gerald and Patrick O. Wheatley, "Applied Numerical Analysis", Pearson Education.
- 5. M.K Jain, S. R. K. Iyengar and R.K Jain, "Numerical Methods for Scientific and Engineering computation", New age International Publishers.
- 6. V. Sundarapandian, "Numerical Linear Algebra", PHI Learning Private Limited, Delhi.

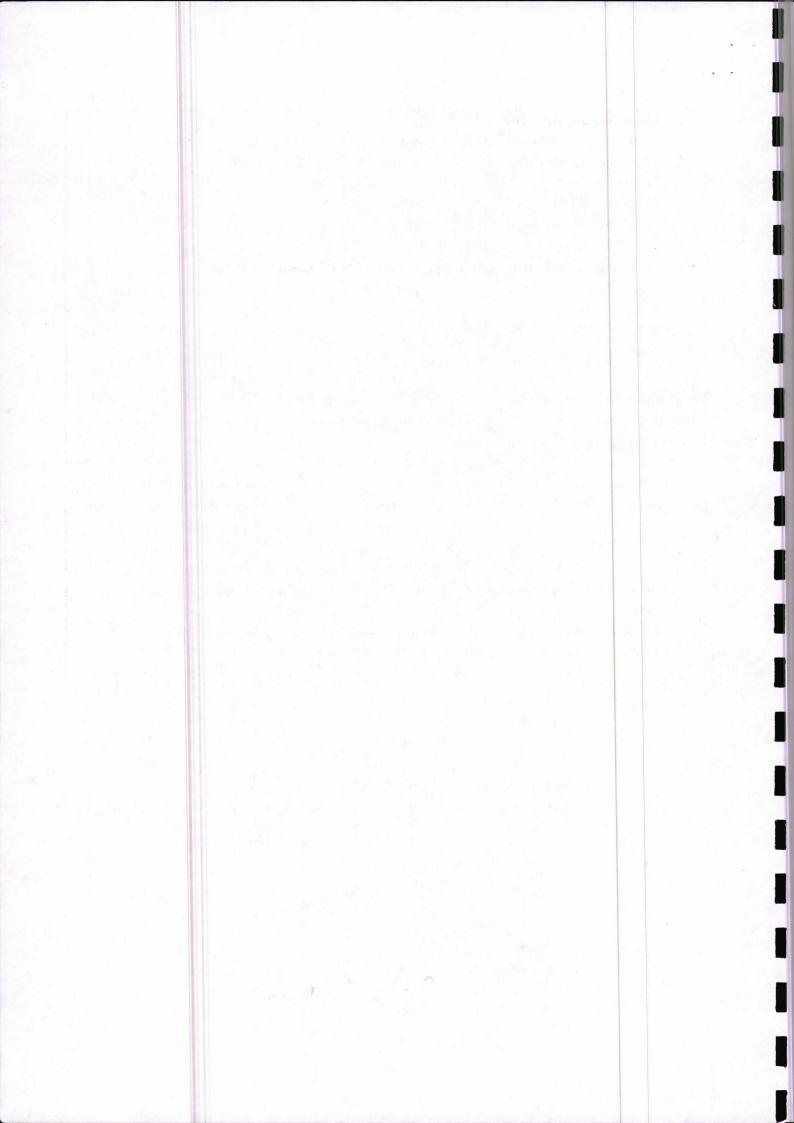
& C. > Multill

1.	Name of the	Department: N	lathe	matics		1			
2.	Course Name	Numerical Analysis and its Applications Lab		L		ŋ	Г		Ρ
3.	Course Code	17070306		0		()		4
4.	Type of Cou mark)	ırse (use tick	Core	e ()	DSE	(*)	AEC ()	SEC ()	OE ()
5.	Pre- requisite (if any)		(Frequency use tick narks)	Even	0	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Numb	er of Lectures,	Tutor	ials, Practical					
Le	ctures =			Tutorials = 0		Pra	ctical = 35		
8.	Course Des	cription:	Es g						

This course analyzed the basic techniques for the efficient numerical solution of problems in science. Topics s covered are: matrix operations, linear equation, Solution of Linear equations for Underdetermined and Overdetermined cases, Eigen values and Eigen vectors of a Square matrix, Solution of Difference Equations, Solution of Difference Equations using Euler and Modified Euler Method, Solution of differential equation using 4th order Runge-Kutta method, Roots of a polynomial, Polynomial using method of Least Square Curve Fitting, Polynomial using method of Least Square Curve Fitting, Polynomial fit, analyzing residuals, exponential fit and error bounds from the given data, Solution of Non-linear equation in single variable using the method of successive bisection

9. Course Objectives:

Many applications in engineering, physics, geology and other specifications containing complicated problems that will require one of the numerical methods to be solved. In this course students will learn the classification of many complicated problems and the suitable numerical methods for obtaining an approximated solution to these problems with desired accuracy.


10. Course Outcomes (COs):

On completion of this course, the students will learn

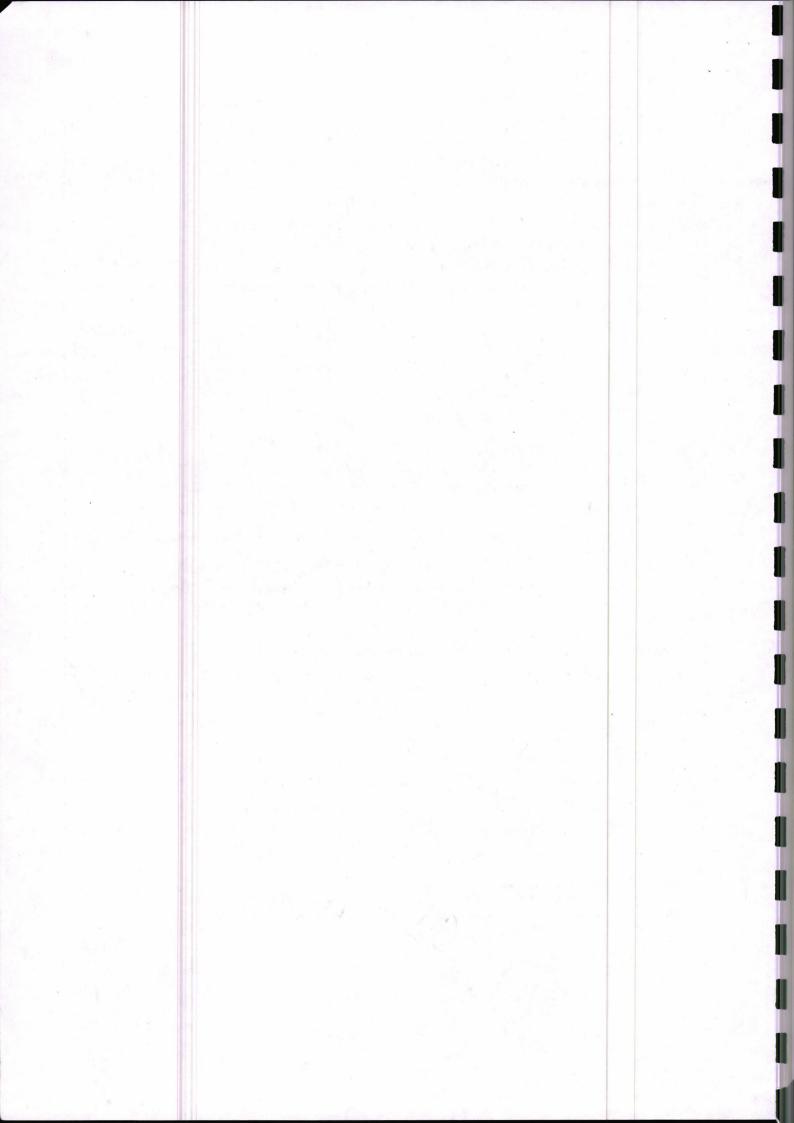
- 1. Practical and theoretical knowledge of a range of matrix operations.
- 2. Practical and theoretical knowledge of Linear equations for Underdetermined and Overdetermined cases.
- 3. Practical and theoretical knowledge of Eigen values and Eigen vectors of a Square matrix.
- 4. Practical and theoretical knowledge of schemes polynomial fit, analyzing residuals, exponential fit and error bounds from the given data.

11. The list of practical's to perform in the computer lab

1. Study of basic matrix operations

- 2. To solve linear equation
- 3. Solution of Linear equations for Underdetermined and Overdetermined cases.
- 4. Determination of Eigen values and Eigen vectors of a Square matrix.
- 5. Solution of Difference Equations.
- 6. Solution of Difference Equations using Euler Method.
- 7. Solution of differential equation using 4th order Runge-Kutta method.
- 8. Determination of roots of a polynomial.
- 9. Determination of polynomial using method of Least Square Curve Fitting.
- 10. Determination of polynomial fit, analyzing residuals, exponential fit and error bounds from the given data.
- 11. Solution of Non-linear equation in single variable using the method of successive bisection.

12. Brief Description of self learning / E-learning component


http://gnindia.dronacharya.info/CSEIT/Downloads/Labmanuals/Lab Manual Numerical Technique.pdf

http://www.ycetnnl.edu.in/downloads/files/n532957dd8a753.pdf

https://www.youtube.com/watch?v=FoukIaj5pP8

- 7. B.S. Grewal, "Numerical Methods in Engineering & Science", Khanna Publication, Ed. 9th.
- 8. E. Balagurusamy, "Numerical Method", Tata McGraw Hill Publication.
- 9. S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI learning Pvt. Ltd.
- 10. Curtis F. Gerald and Patrick O. Wheatley, "Applied Numerical Analysis", Pearson Education.
- 11. M.K Jain, S. R. K. Iyengar and R.K Jain, "Numerical Methods for Scientific and Engineering computation", New age International Publishers.
- 12. V. Sundarapandian, "Numerical Linear Algebra", PHI Learning Private Limited, Delhi.

No Cit Nev freise Au

2.	Course Name	Differential Geometry	L			Τ		Р
3.	Course Code	17070307	2			0		0
4.	Type of Course	e (use tick mark)	Core ()	DSE	0	AEC ()	SEC	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even	0	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tuto	rials, Practical	and the				6. S. 1. 6. 1
Lee	ctures = 30		Tutorials = 0		Pr	actical = 0	A Star Star	Sea Per Co
8.	Course Descrip	otion:		and the second second			1.347	

This course comprises application of calculus and Algebra to the geometry of curves and surfaces in spaces. This course consist of Tensor, Riemann Chrisoffel and Metric space, Tangent space, Different types of Curvature and Involutes

9. Course Objectives:

The objective of this course is to provide the basics geometric concepts of curves, surfaces and tensors.

10. Course Outcomes (COs):

After completion the syllabus student will be able to explain the concept of different types of curves and its role in Modern Mathematics. Apply the Differential Geometry techniques to specific research problems in Mathematics

11. Unit wise detailed content

Unit-1 Number of lectures = 15 Theory of Space Curves

Space curves, Planer curves, Curvature, Torsion and Serret-Frenet formulae. Osculating circles, and spheres. Existence of space curves. Evolutes and involutes of curves.

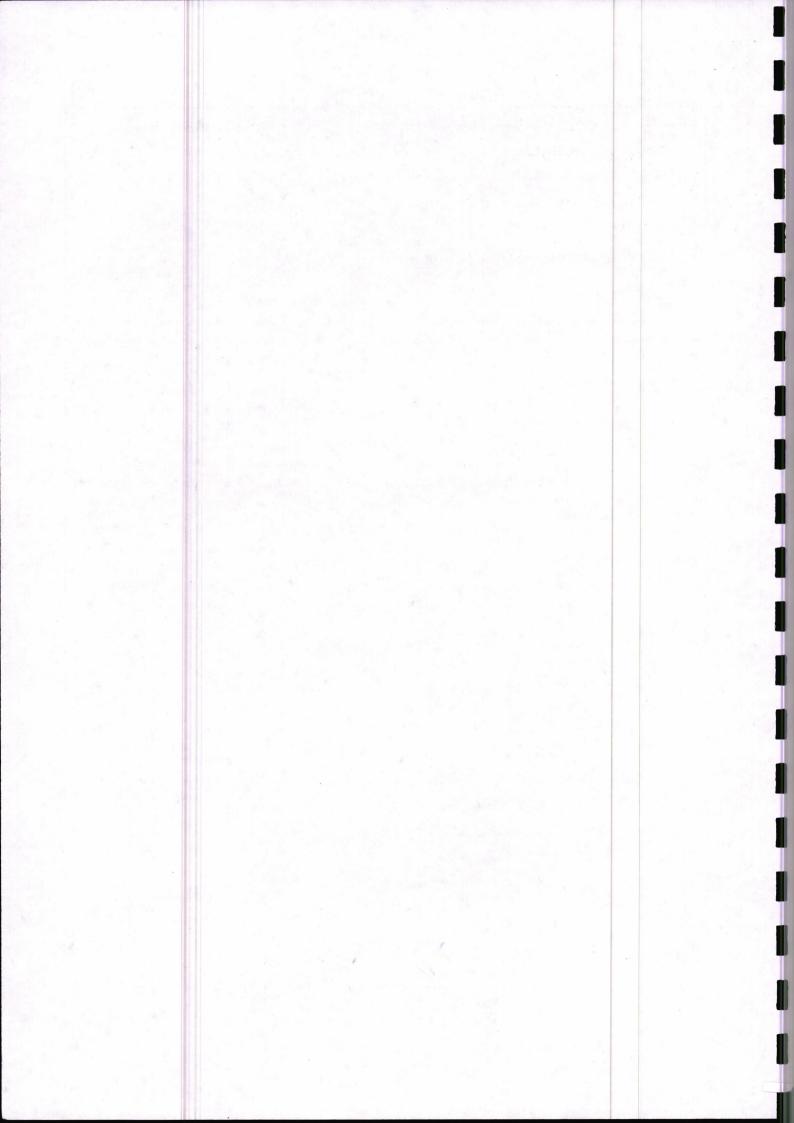
Unit - 2 Number of lectures = 15 Theory of Surfaces

Parametric curves on surfaces. Direction coefficients. First and second Fundamental forms. Principal and Gaussian curvatures. Lines of curvature, Eulers theorem. Rodrigues

formula, Conjugate and Asymptotic lines.

12. Brief Description of self learning / E-learning component

http://strangebeautiful.com/other-texts/spivak-intro-diff-geom-v1-3ed.pdf


http://www2.ing.unipi.it/griff/files/dC.pdf

https://fsw01.bcc.cuny.edu/luis.fernandez01/web/texts/dgcs.pdf

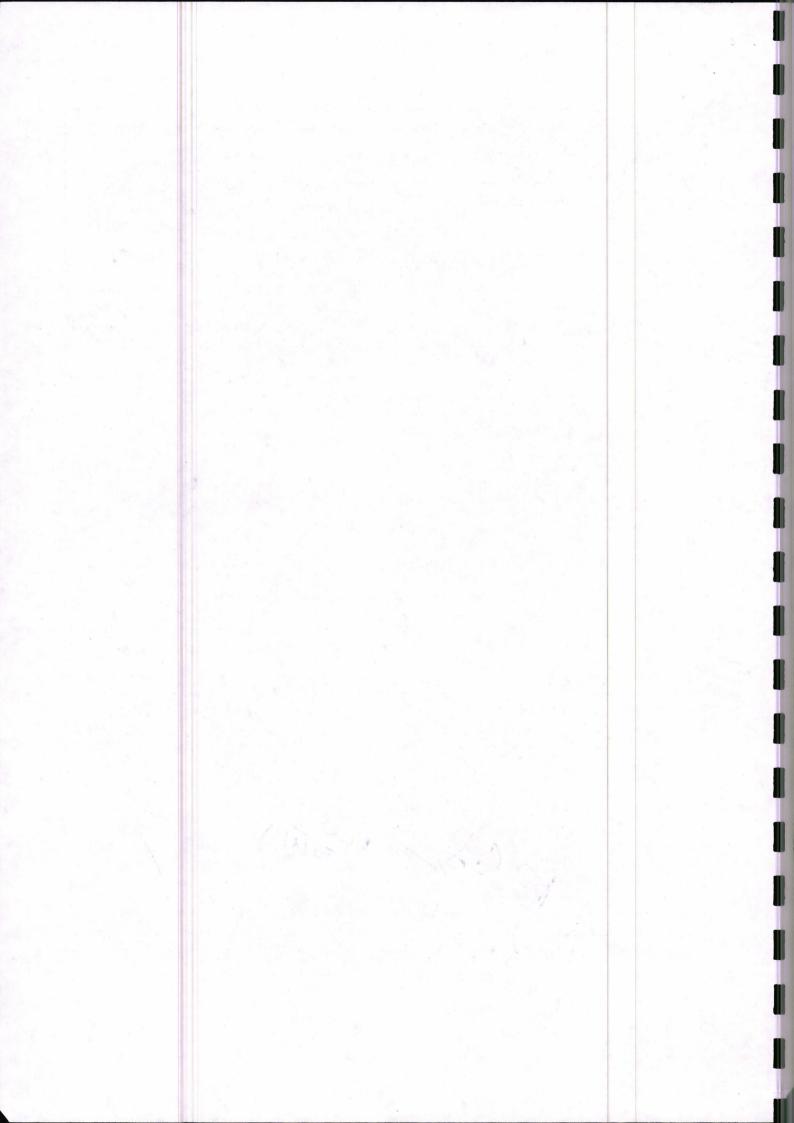
http://web.math.ku.dk/noter/filer/geom1.pdf

http://people.math.aau.dk/~raussen/INSB/AD2-11/book.pdf

for & we stalls

12. A. Goetz: Introduction to Differential Geometry : Addition Wesley Publishing Company 1970

13. Willmore, T. J., An Introduction to Differential Geometry", Dover publications, 2012.


14. Lang, S., Fundamentals of Differential Geometry", Springer, 1999.

15. Spain, B., Tensor Calculus: A concise Course", Dover Publications, 2003.

16. Struik, D., J., Lectures on Classical Differential Geometry", Dover Publications, 1988.

17. Shanti Narayan : Cartesian Tensors, S., Chand and Company, New Delhi

W.C.S. M. Halu

1.	Name of the D	epartment: Mathemati	cs				18	
2.	Course Name	Discrete Mathematics and Automata	L		1	Γ		Р
3.	Course Code	170701308	4		C)	1.000	0
4.	Type of Cours	e (use tick mark)	Core ()	DSE	(√)	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even	0	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tutorials,	Practical					a sh
Lee	ctures = 50		Tutorials = 0	1. S. S.	Pra	ctical = 0		
8.	Course Descri	ntion:						141 - 198

Introduction to discrete structures and their applications like logic, gate and set theory, recursive programming, digital logic and combinatorial circuits, real number representation and finite automata used in computer science.

9. Course Objectives:

To provide basic and theoretical competencies that ismajorly used in Computer Science. To help students understand and appreciate the basic mathematical knowledge which is fundamental to Computer Science.

10. Course Outcomes (COs):

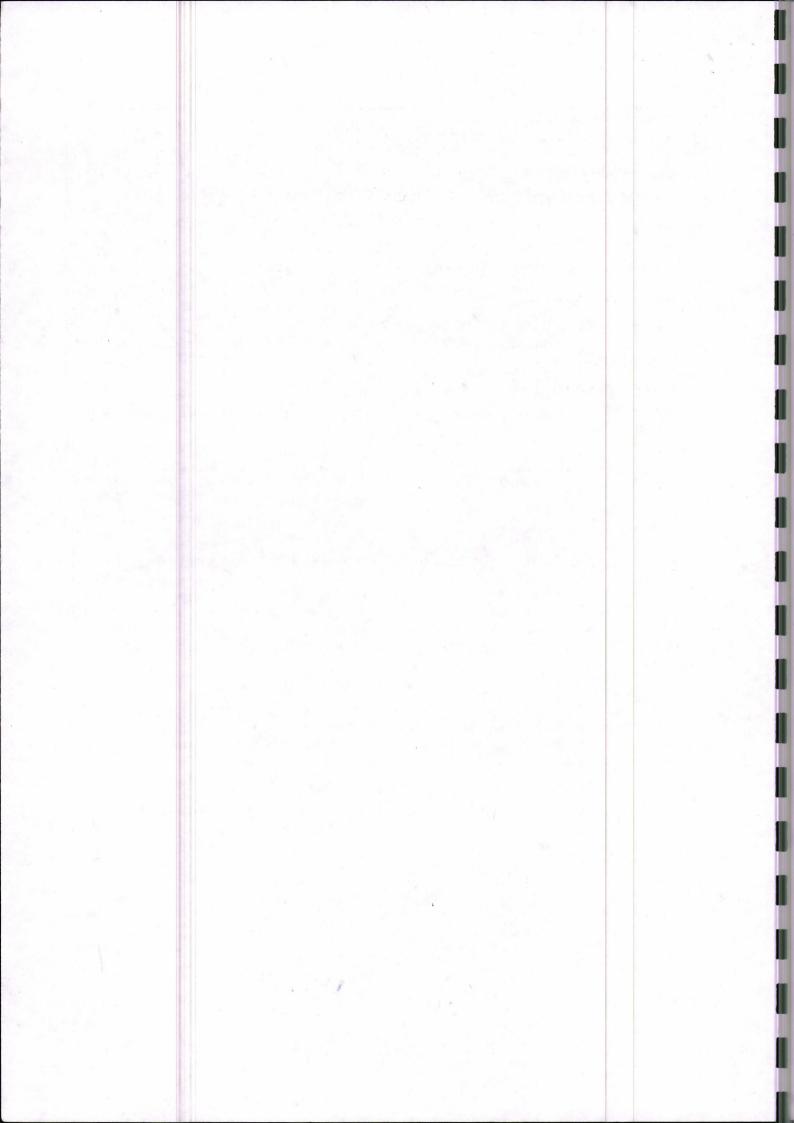
Determination of the logical equivalence of propositions and the validity of formal arguments via truth tables. Design and construction of a combinatorial circuit from a verbal description. Finite automata are able to construct a recognizer simple language.

11. Unit wise detailed content

Unit-1 Number of lectures = 15 | Title of the unit: Logics, Algebraic Struture and Lattices

Formal Logic: Statement, Symbolic representation, totologies, quantifiers, pradicates and validity, propositional logic. Semigroups and Monoids: Definitions and examples of semigroups and monoids (including those pertaining to concentration operations). Homomorphism of semigroups and monoids, Congurence relation and quotient semigroups, sub semigropups and sub monoids, Direct products basic homomorphism theorem. Lattices: Lattices as partially ordered sets, their properties. Lattices and algebraic systems.

Unit – 2 Number of lectures = 10 Title of the unit: Boolean Algebra


Boolean Algebra: Boolean Algebra as Lattices. Various Boolean Identities Join-irreducible elements. Atoms and Minterms. Boolean Forms and their Equivalence. Minterm Boolean Forms, Sum of Products Canonical Forms. Minimization of Boolean Functions. Applications of Boolean Algebra to Switching Theory (using AND, OR and NOT gates). The Karnaugh Map method.

Unit – 3 Number of lectures = 10 Title of the unit: Graph Theory.

Graph Theory – Definition of (undirected) Graphs, Paths, Circuits, Cycles and Subgroups. Induced Subgraphs. Degree of a vertex. Connnectivity. Planar Graphs and their properties. Trees, Spanning Trees. Minimal Spanning Trees and Kruskal'sAlgorithum. Matrix Representations of Graphs. Euler's Theorem on the Existence of Eulerian Paths and Circuits. Directed Graphs. Indegree and Outdegree of a Vertex. Weighted undirected Graphs.

Unit – 4 Number of lectures = 15 Title of the unit: Theory of Automata

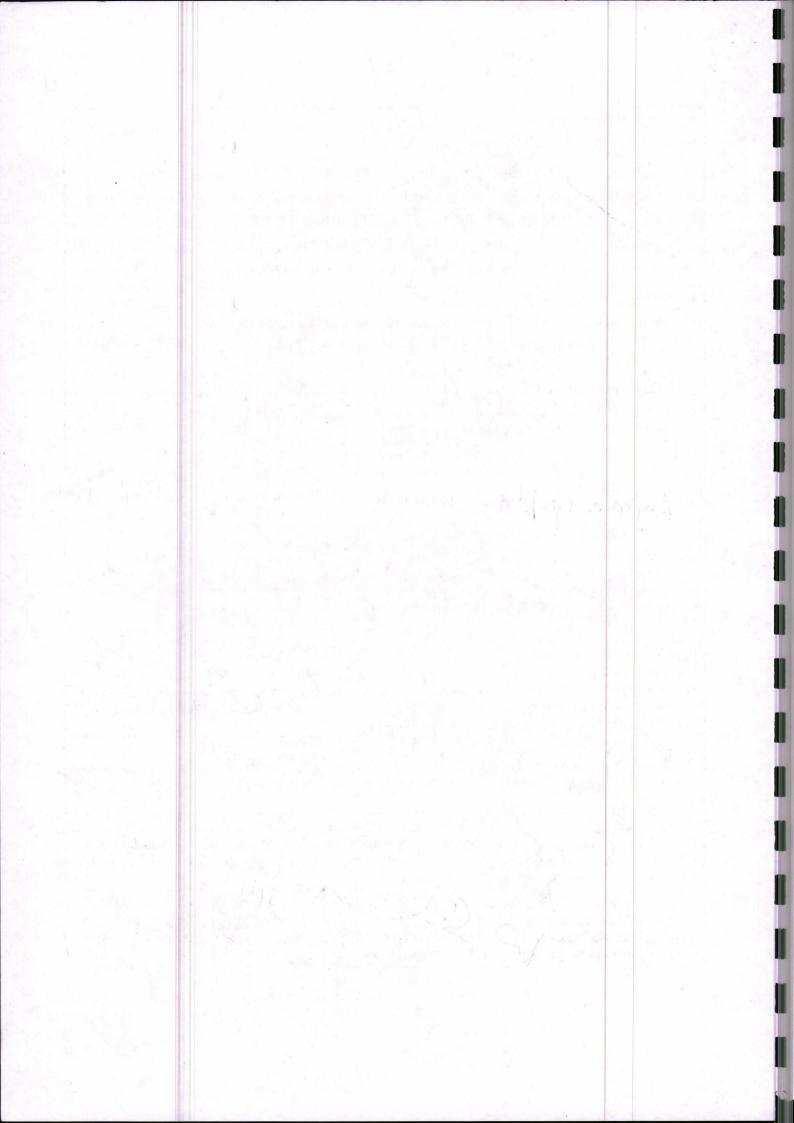
Introductory Computability Theory – Finite state machines and their transition table diagrams. Equivalence of finite state machines. Reduced Machines, Homomorphism. Finite automata. Acceptors.

Moore and Mealy Machines.

12. Brief Description of self learning / E-learning component

www.youtube.com/watch?v=7k4Di5u-oUU&index=12&list=PL0862D1A947252D20

www.youtube.com/watch?v=_BIKq9Xo_5A&index=13&list=PL0862D1A947252D20


www.youtube.com/watch?v=RMLR2JHHeWo&list=PL0862D1A947252D20&index=14

www.youtube.com/watch?v=fZqfkJ-cb28&list=PL0862D1A947252D20&index=17

www.youtube.com/watch?v=Fk8nJjzohr8&index=22&list=PL0862D1A947252D20

- 1. Discrete Mathematics , M.K. Venkataraman, The National Publishing Company
- 2. Discrete Mathematical Structures with Applications to Computer Science J.P. Trembly and Manohar, Tata McGraw-Hill Publications.
- 3. Elements of Discrete Mathematics, Liu, Tata Mac Graw Hills.
- 4. Kolman B, Busby R.C. and Ross S., Discrete Mathematical Structures for Computer Science, Fifth Edition, Prentice Hall of India, New Delhi, 2006.
- 5. FBaburam, Discrete Mathematics, Pearson Education 2010 Anjara Gupta - Discrete Mathematics, Kataria Publication,

W C.L Nor FINIU

1.	Name of the De	epartment: Mathema	atics		,		All the good	
2.	Course Name	Integral Equations & Calculus of Variation	L]	Γ		Р
3,	Course Code	17070309	4		()		0
4.	Type of Course	e (use tick mark)	Core ()	DSE	(✓)	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even	0	Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tutoria	ls, Practical	1				
Le	ctures = 50		Tutorials = 0		Pra	ctical = 0		1.11
8.	Course Descrip	otion:						

This course contains Fredholm and Volterra integral equations and their solutions using various methods such as Neumann series, resolvent kernels, Euler's equation, variational derivative and invariance of Euler's equations.

9. Course Objectives:

The objectives of this course are to:

- 1. give an account of the foundations of Integral Equations and calculus of variations and their applications in mathematics;
- 2. solve simple initial and boundary value problems by using several variable calculus.

10. Course Outcomes (COs):

Upon successful completion of this course, the student will be able to:

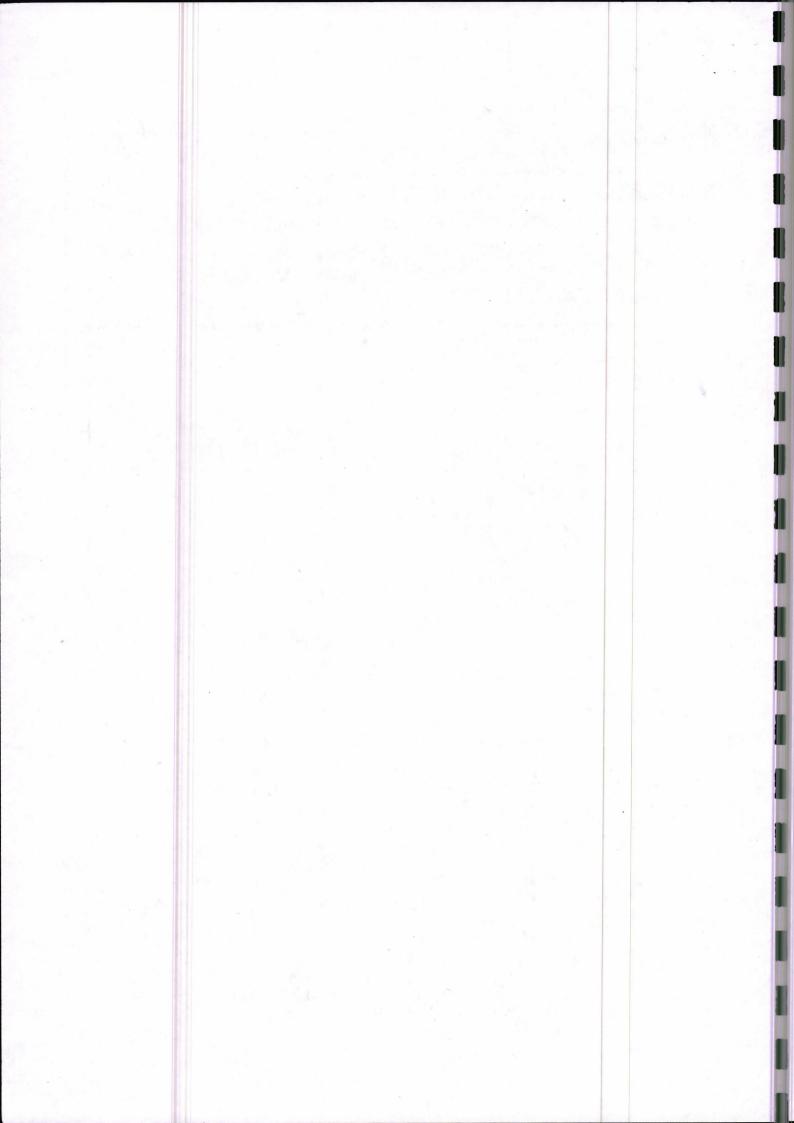
- 1. Understand different kinds of Fredholm and Voltera Integral equations.
- 2. Orthonormal systems of functions in Integral equations
- 3. Different methods in Calculus of variations.

11. Unit wise detailed content

Unit-1	Title of the unit: Definitions, classifications and Eigen functions of integral equations
	 runctions of integral equations

Definitions of integral equations and their classification, Relation between integral and differential equations, Fredholm integral equations of second kind with separable kernels, Reduction to a system of algebraic equations. Eigen values and eigen functions, iterated kernels, iterative scheme for solving Fredholm integral equation of second kind (Neumann series), Resolvent kernel, Application of iterative scheme to Volterra's integral equation of second kind.

Unit – 2 Number of lectures = 10 Title of the unit: Hilbert Schmidt theory


Hilbert Schmidt theory, symmetric kernels, Orthonormal systems of functions. Fundamental properties of Eigen values and Eigen functions for symmetric kernels. Solution of integral equations by using Hilbert Schmidt theory.

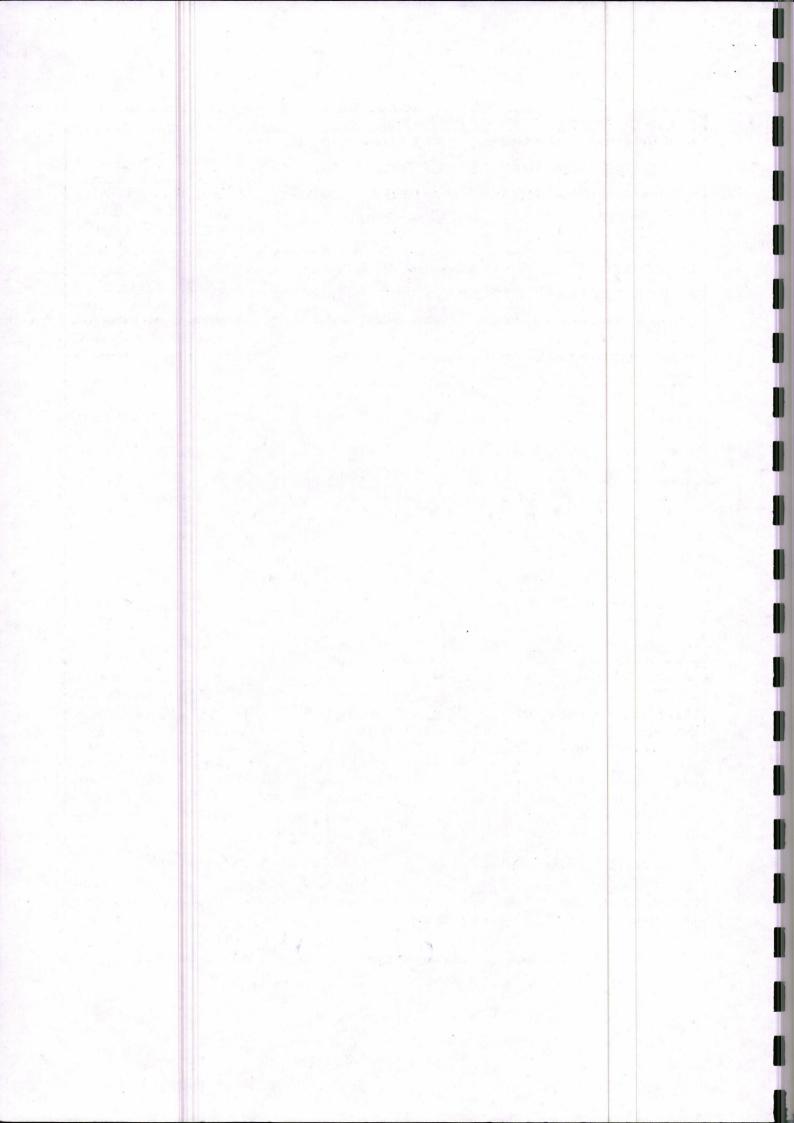
Unit – 3 Number of lectures = 10 Title of the unit: Calculus of Variation

Introduction to Calculus of Variations, Review of basic multi-variable calculus, constrained maxima and minima, Lagrange multipliers. The Euler-Lagrange equation. Variational problem with moving boundaries: Transversality conditions, one sided variations.

Unit – 4 Number of lectures = 15 Title of the unit: Extremum and Canonical transformations

General definitions, Jacobi condition, Weirstrass function, Legendre condition, principle of Least action, Lagrange's equation from Hamilton's principle. Canonical transformation, Direct Methods in variational problems, Ritz, method, Galerkin's method, Collection method and Least square method.

12. Brief Description of self learning / E-learning component


http://nptel.ac.in/courses/111104025/NPTEL-CoV-IE-Solutions.pdf

http://nptel.ac.in/courses/111104025/NPTEL-CoV-IE-Problems.pdf

http://www.nptelvideos.in/2012/12/calculus-of-variations-and-integral.html

- 1. A. S. Gupta, Calculus of Variations with Applications, PHI Learning, 2015.
- 2. Pundir, S and Pundir S., Calculus of Variation, Pragati Prakashan, Fifth edition 2015.
- 3. R. P. Kanwal, Linear Integral Equation, Theory and Technique, Academic Press New York 1971.
- 4. M.D. Rai Singhania, Integral Equations, Pragati Prakashan.

W C.S Magins

2. Course Name	Functional Analysis	L]	Γ		Р
3. Course Code	17070401	4	()		0
4. Type of Course (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	Odd ()	Either Sem ()	Every Sem ()
7. Total Number of	f Lectures, Tutoria	ls, Practical				and the second
Lectures = 50		Tutorials = 0	Pra	ctical = 0		
8. Course Descript	ion:					. š. –
This course is for stu applied mathematics of spaces of functions	courses. Functional	analysis is the branc ended to introduce the	h of mathem	atics conce	rned with	the study

9. Course Objectives:

The objective of the module is to study linear mappings defined on Banach spaces and Hilbert spaces, especially linear functionals (realvalued mappings) on L(p), C[0, 1] and some sequence spaces. In particular, the four big theorems in functional analysis, namely, Hahn-Banach theorem, uniform boundedness theorem and open mapping theorem will be covered

10. Course Outcomes (COs):

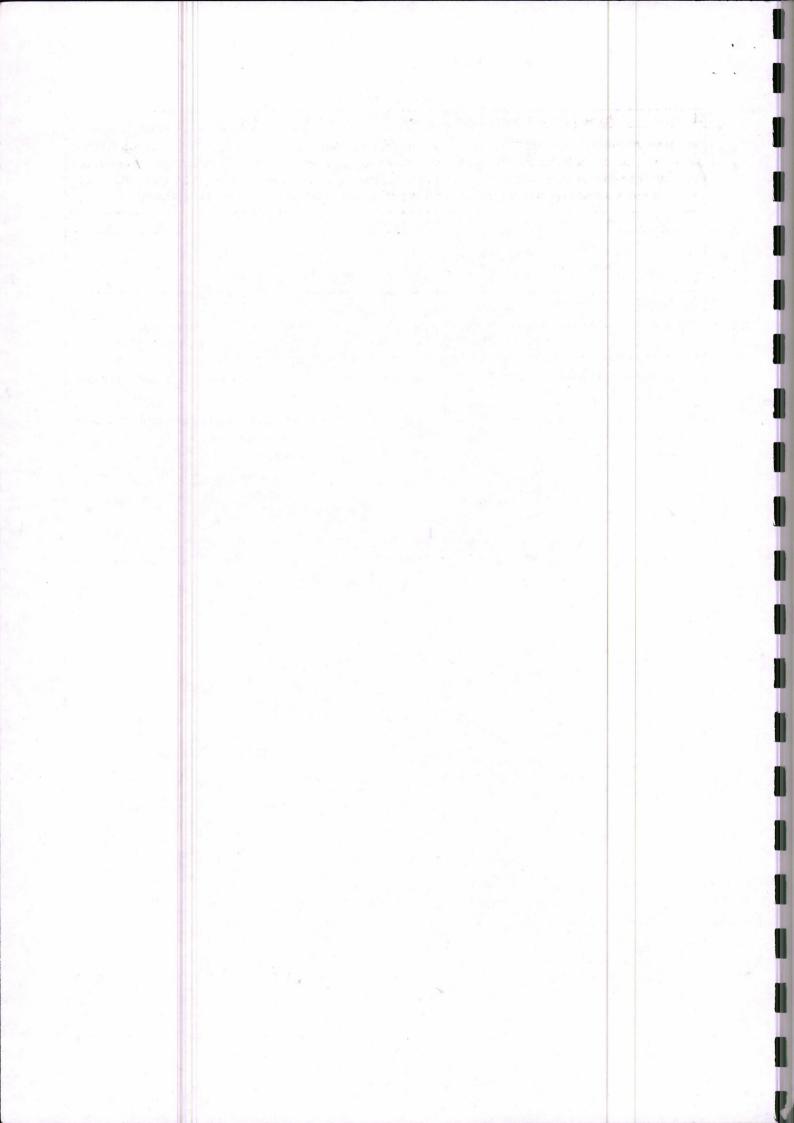
By the end of this course, students should be able to:

- 1. describe properties of normed linear spaces and construct examples of such spaces
- 2. extend basic notions from calculus to metric spaces and normed vector spaces
- 3. state and prove theorems about finite dimensionality in normed vector spaces
- 4. prove that a given space is a Hilbert spaces or a Banach Spaces
- 5. describe the dual of a normed linear space
- 6. state and prove the Hahn-Banach theorem.

11. Unit wise detailed content

Unit-1 Number of lectures = 15 Title of the unit:Normed Linear Spaces

Normed linear spaces, Metric on normed linear spaces, Completion of a normed space, Banach spaces, subspace of a Banach space, Holder and Minkowski inequality, Completeness of quotient spaces of normed linear spaces. Completeness of lp, Lp, Rn, Cn and C[a,b]. Incomplete normed space


Unit – 2 Number of lectures = 15 Title of the unit:Bounded Linear Transformations

Finite dimensional normed linear spaces and Subspaces, Bounded linear transformation, Equivalent formulation of continuity, Spaces of bounded linear transformations, Continuous linear functional, Conjugate spaces. Hahn-Banach extension theorem (Real and Complex form).

Unit – 3 Number of lectures = 10 Title of the unit:Bounded Linear Functionals

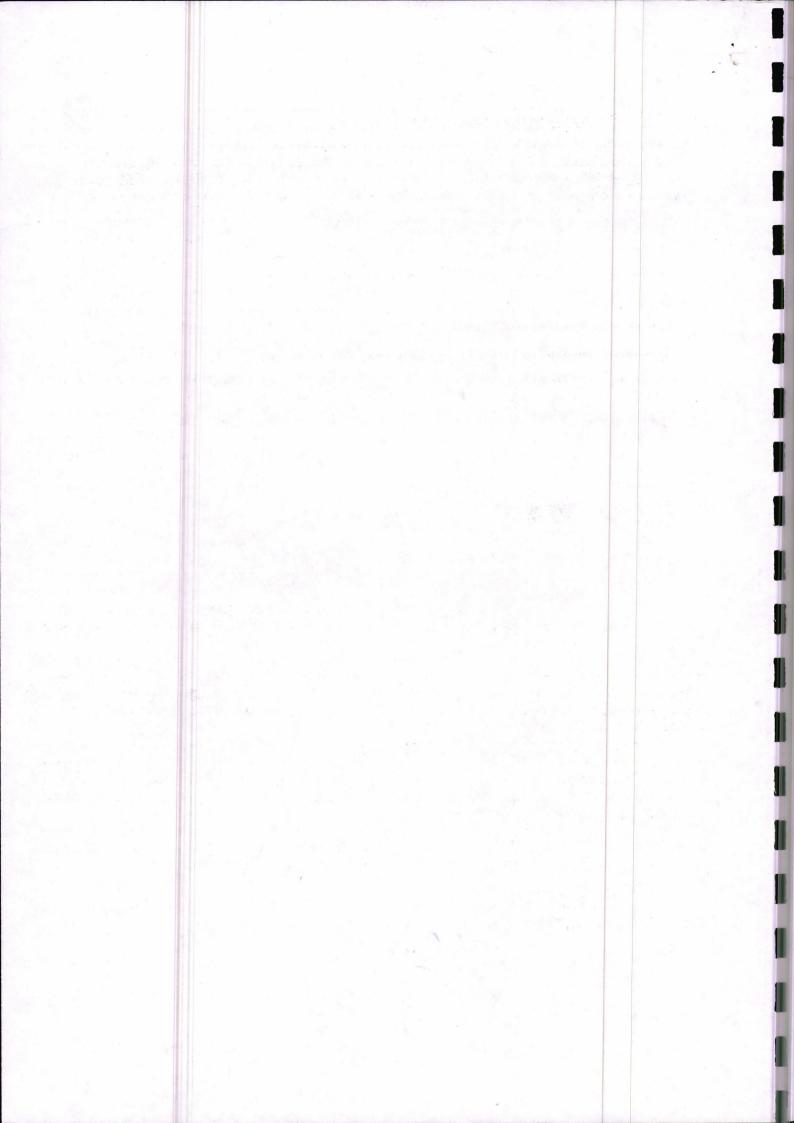
Riesz Representation theorem for bounded linear functionals on Lp and C[a,b]. Second conjugate spaces, Reflexive space, Uniform boundedness principle and its consequences, Open mapping theorem and its application, Projections, Closed Graph theorem.

de C.S. Mendalit

Unit – 4	Number of lectures = 10	Title of the unit:Banach Spaces	
----------	-------------------------	---------------------------------	--

Equivalent norms, Weak and Strong convergence, Their equivalence in finite dimensional spaces. Weak sequential compactness, Solvability of linear equations in Banach spaces. Compact operator and its relation with continuous operator, Compactness of linear transformation on a finite dimensional space, Properties of compact operators, Compactness of the limit of the sequence of compact operators.

12. Brief Description of self learning / E-learning component

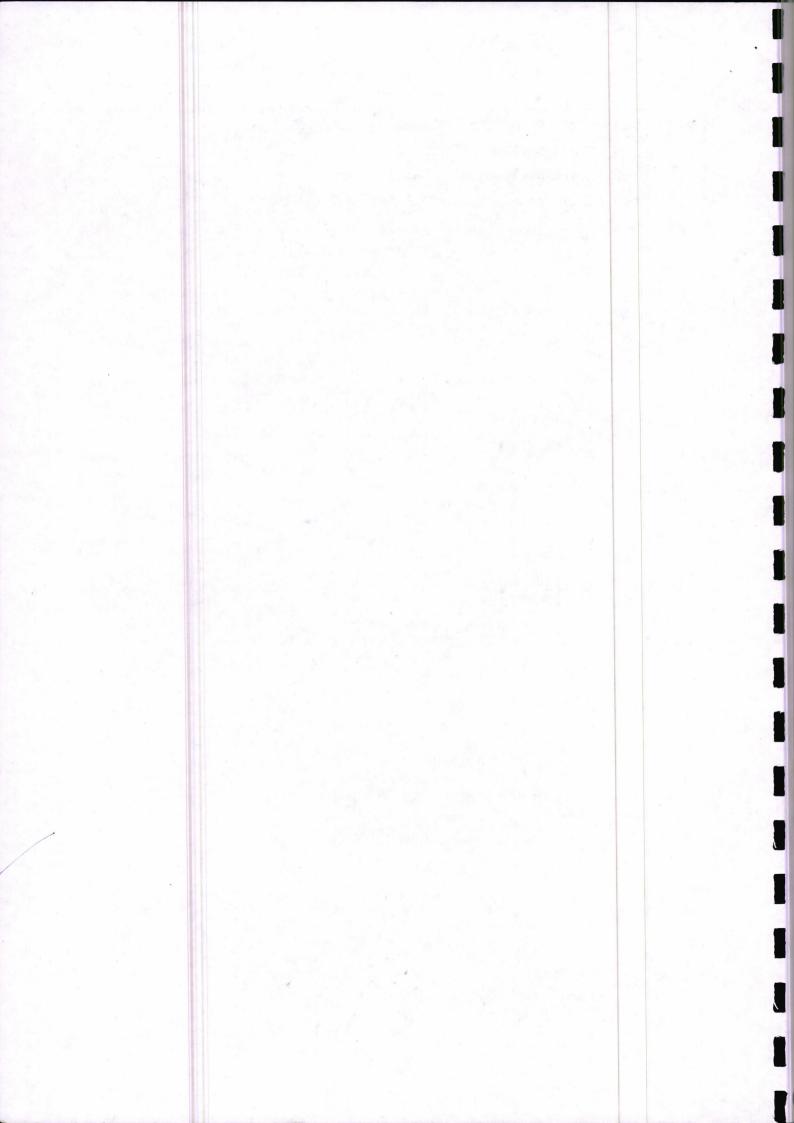

http://www.nptelvideos.com/lecture.php?id=13908

https://link.springer.com/book/10.1007/978-3-319-06728-5

- 1. H.L. Royden, Real Analysis, MacMillan Publishing Co., Inc., New York, 4 th Edition, 1993.
- 2. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley.
- 3. George F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill Book Company, 1963.
- 4. A. H. Siddiqi, Khalil Ahmad and P. Manchanda, Introduction to Functional Analysis with Applications.
- 5. K.C. Rao, Functional Analysis, Narosa Publishing House, Second edition.

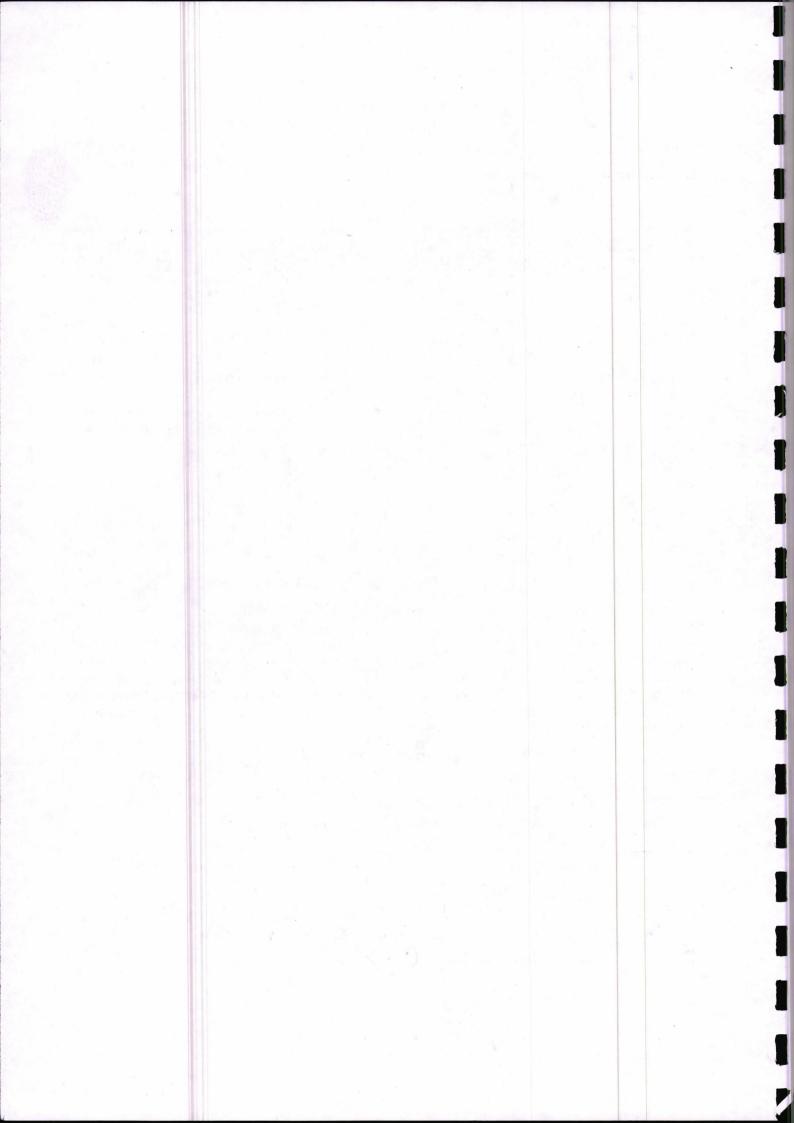
Ner Telly

2 S.2 A



		partment: Mathema					_
2. Course N		Number Theory	L		Т		P
3. Course C	ode	17070402	4		0		C
4. Type of C	Course	(use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requi	isite		6. Frequency	Even ()	Odd (✓)	Either	Every
<mark>(if any)</mark>			(use tick marks)			Sem ()	Sem
		of Lectures, Tutorial					
Lectures = 50			Tutorials = 0	Prac	tical = 0		
8. Course D	escrip	tion:					
Number Theo	ry is a	thriving and active a	rea of research whose or	igin are am	ongst the old	est in matl	nematic
			and Farey series and Se				
Quadratic Res	idues a	and Group Congruenc	e.				
9. Course O	bjecti	ves:					
The objective	of this	course is to provide	students the basic conce	nt of numbe	ore and their r	properties	Studer
			ce and Quadratic Residues			noperties.	Studen
			Contraction residues				
10. Course O	utcom	les (COs):				in land	
In the Compl	etion c	of this course Students	s will be able to solve the	linear Cono	Tuence Stud	ents will of	so know
			ainder Theorem its extens		ruence. Stude	and will di	30 KIIO
						Sector State	
1. Unit wise				<u> </u>			2.8-2
J nit-1	Numb	er of lectures = 12	Fermat and Farey	Series and	Details		
Distribution of	of the	prime, Fermat and M	Aersenne numbers, Farey	y series and	l some result	t concernin	ng Far
			rs by rations, Hurwitz Th				-
Jnit - 2	Numh	er of lectures = 18	Square Theorems	and Lower	Round Deta	ile	
			z^2 , $x^4 + y^4 = z^4$ the represe				
			e numbers g(k) & G(K),			G(k). Sim	Iltaneo
inear and non	linier	congruences, Uninese	e Remainder Theorem and	1 Its extension	on.		
Unit - 3	Numb	er of lectures = 10	Quadratic Residue	es and Grou	ip Congruen	<mark>ce's</mark>	
Ouadratic resi	dues a	nd non-residues Lege	endre Symbol, Gauss lemi	ma and its a	pplication O	uadratic La	aw of
			c in Zn. The group congru				
		heir existence	5 1 5				
Init A	Numb	or of lostures - 10	Diamann Zata Euro	tion			
		er of lectures = 10	Riemann Zeta Func				
Riemann Zeta	a Func	ction (s) and its con	vergence. Application to	o prime nu			
Riemann Zeta Evaluation of	a Func (2) an	ction (s) and its con ad (2k). Dirichlet seri		o prime nu			
Riemann Zeta Evaluation of	a Func (2) an	ction (s) and its con ad (2k). Dirichlet seri	vergence. Application to	o prime nu			
Riemann Zeta Evaluation of Introduction to	a Func (2) an o modu	ction (s) and its con nd (2k). Dirichlet seri alar forms.	vergence. Application to	o prime nu			
Riemann Zeta Evaluation of Introduction to 12. Brief Des	a Func (2) an o modu criptio	ction (s) and its con nd (2k). Dirichlet seri alar forms. on of self-learning / F	vergence. Application to ies with simple propertie C-learning component	o prime nu			
Riemann Zeta Evaluation of Introduction to 12. Brief Des https://www.y	a Func (2) an o modu criptio	ction (s) and its con nd (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx	vergence. Application to ies with simple propertie E-learning component kjpVQms	o prime nu			
Riemann Zeta Evaluation of Introduction to I2. Brief Des https://www.y	a Func (2) an o modu criptio	ction (s) and its con nd (2k). Dirichlet seri alar forms. on of self-learning / F	vergence. Application to ies with simple propertie E-learning component kjpVQms	o prime nu			
Riemann Zeta Evaluation of ntroduction to 12. Brief Des https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie C-learning component cjpVQms agOgOAc	o prime nu s. Euler's p	products and		
Riemann Zeta Evaluation of Introduction to 12. Brief Des https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie C-learning component cjpVQms agOgOAc	o prime nu s. Euler's p	products and		
Riemann Zeta Evaluation of Introduction to 12. Brief Des https://www.y https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie C-learning component cjpVQms agOgOAc	o prime nu s. Euler's p	products and		
Riemann Zeta Evaluation of Introduction to 12. Brief Des https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie C-learning component cjpVQms agOgOAc	o prime nu s. Euler's p	products and		
Riemann Zeta Evaluation of Introduction to 12. Brief Des https://www.y https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie C-learning component cjpVQms agOgOAc	o prime nu s. Euler's p	products and		
Riemann Zeta Evaluation of Introduction to 12. Brief Des https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie C-learning component cjpVQms agOgOAc	o prime nu s. Euler's p	products and		
Riemann Zeta Evaluation of Introduction to I2. Brief Des https://www.y https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie C-learning component cjpVQms agOgOAc	o prime nu s. Euler's p	products and		
Riemann Zeta Evaluation of ntroduction to 2. Brief Des https://www.y	a Func (2) an o modu criptio outube	ction (s) and its con ad (2k). Dirichlet seri alar forms. on of self-learning / H e.com/watch?v=SCvtx e.com/watch?v=QgPfa	vergence. Application to ies with simple propertie E-learning component kjpVQms	o prime nu s. Euler's p	products and		

1


I

I

- 1. G.H Hardy and E.M Wright, An Introduction to the theory of Numbers
- 2. D.M.Burton, Elementary Number Theory
- 3. N.H.McCoy, The Theory of Numbers, London McMilan
- 4. I.Niven and H.S.Zuckermann, An Introduction to the theory of Numbers

the C. I we from

1.	Name of the Dep	artment: Mathen	natics		A State		
2.	Course Name	Mathematical Programming and its Application	L	T		Р	
3.	Course Code	17070403	4	0		0	
4.	Type of Course (use tick mark)		Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even (✓)	Odd ()	Either Sem ()	Every Sem ()
7.	Total Number of	Lectures, Tutori	als, Practical		142		
Lectures = 50			Tutorials = 0	Practical = 0			
8.	Course Descript	ion:					

This course presents the theory and application of Mathematical Programming. It extents the theory of optimization methods to more realistic problems

9. Course Objectives:

Students will be able to understand

1. Describe non-linear programming problems.

2. Distinguish non-linear and linear programming problems.

3. Classifies the non-linear programming problems

10. Course Outcomes (COs):

After completing this course students will be able to

1. Solve problems involving optimization models with integer constraints.

2. Have deep insight in solving optimization problems which are non-linear.

3. Distinguish between "single objective" and "multiple objective" functions

11. Unit wise detailed content

~

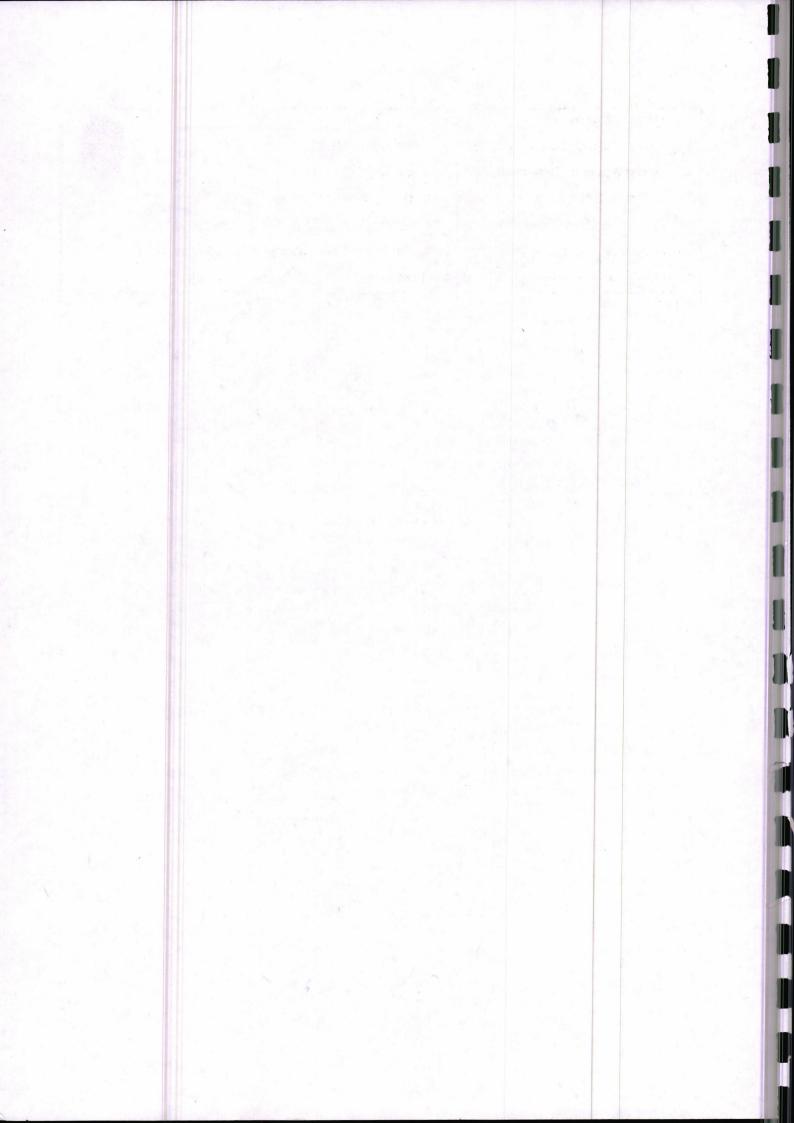
Unit-1 Number of lectures = 15 Title of the unit: Convex functions

Convex sets, convex functions, pseudo-convex functions, quasi-convex, explicit quasi-convex, quasi-monotonic functions and their properties from the point of view of mathematical programming. Kuhn-Tucker conditions of optimality.

Unit – 2 Number of lectures = 10 Title of the unit: Duality Theory

Theory of revised simplex algorithm. Duality theory of linear programming. Sensitivity analysis.

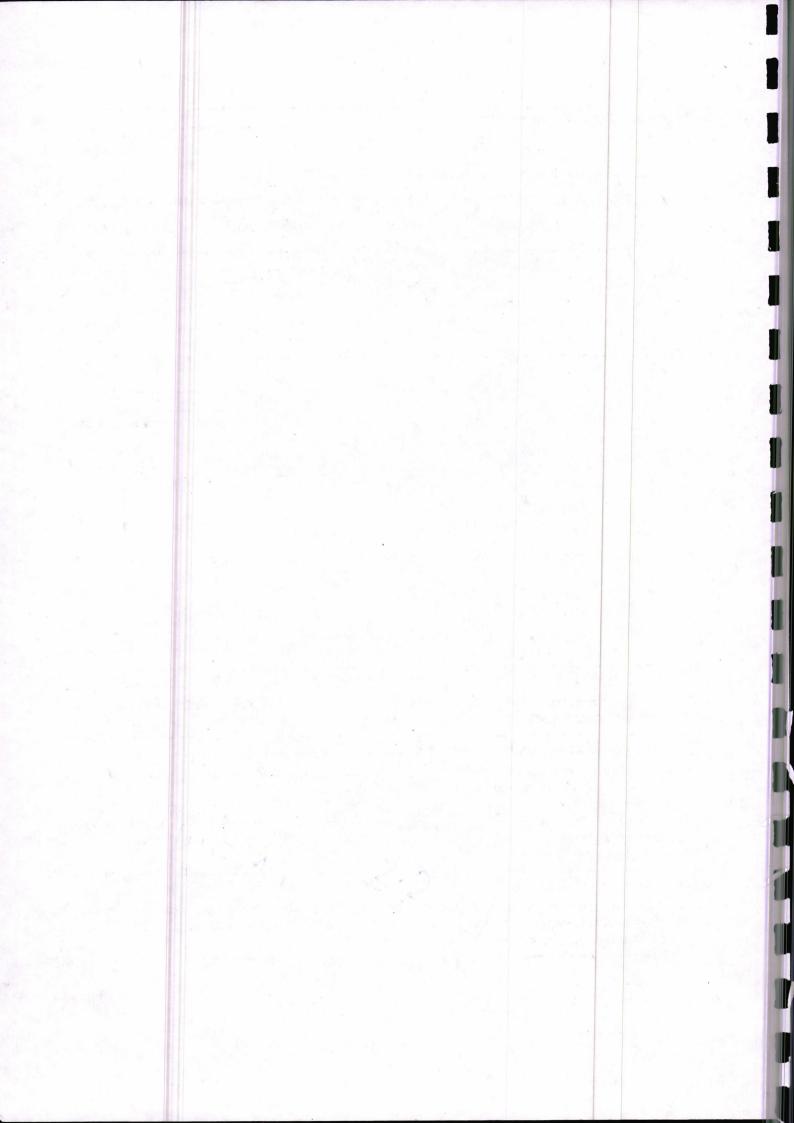
Unit – 3 Number of lectures = 10 Title of the unit: Parametric linear programming


Parametric linear programming. Integer programming and linear goal programming.

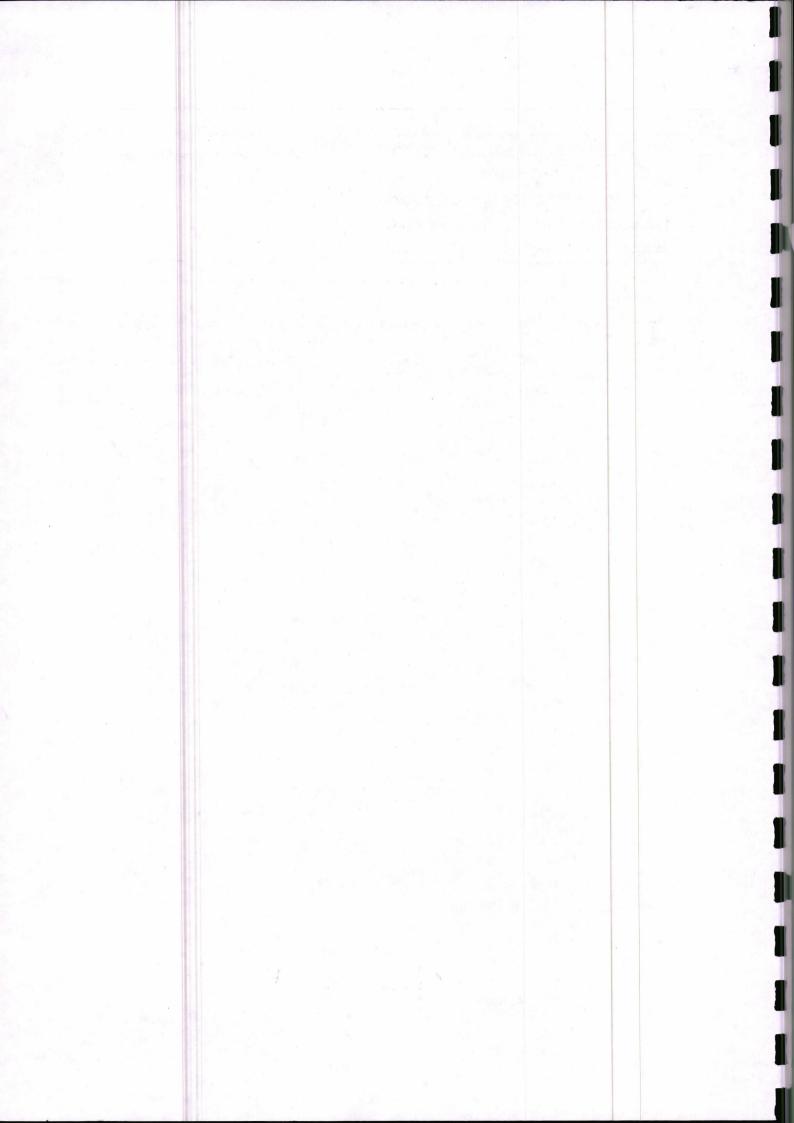
Unit - 4 Number of lectures = 15 Title of the unit: Quadratic Programming

Quadratic programming: Wolfe's algorithm, Beale's algorithm, Theil and Vande-Pannealgorithm. Duality theory of quadratic and convex programming.

12. Brief Description of self learning / E-learning component


https://www.youtube.com/watch?v=liFWi2zR0MA&index=2&list=PLqGm0yRYwTipntZ17qTnGYAky OPuhNEf

13. Books Recommended


- 1. Murty, Katta G, Linear and Combinatorial Programming
- 2. G. Hardy, Linear Programming, Narosa Publishing house, 1995.
- 3. G. Hardy, Nonlinear and Dynamic Programming, Addison-Wesley, Reading Mass.
- 4. H.A. Taha, Operations Research: An introduction, Macmillan Publishing Co., New York
- 5. N. S. Kambo, Mathematical Programming Techniques, Affiliated East-West Press.
- 6. O. L. Mangasarian, Non linear Programming, McGraw Hill, New York.

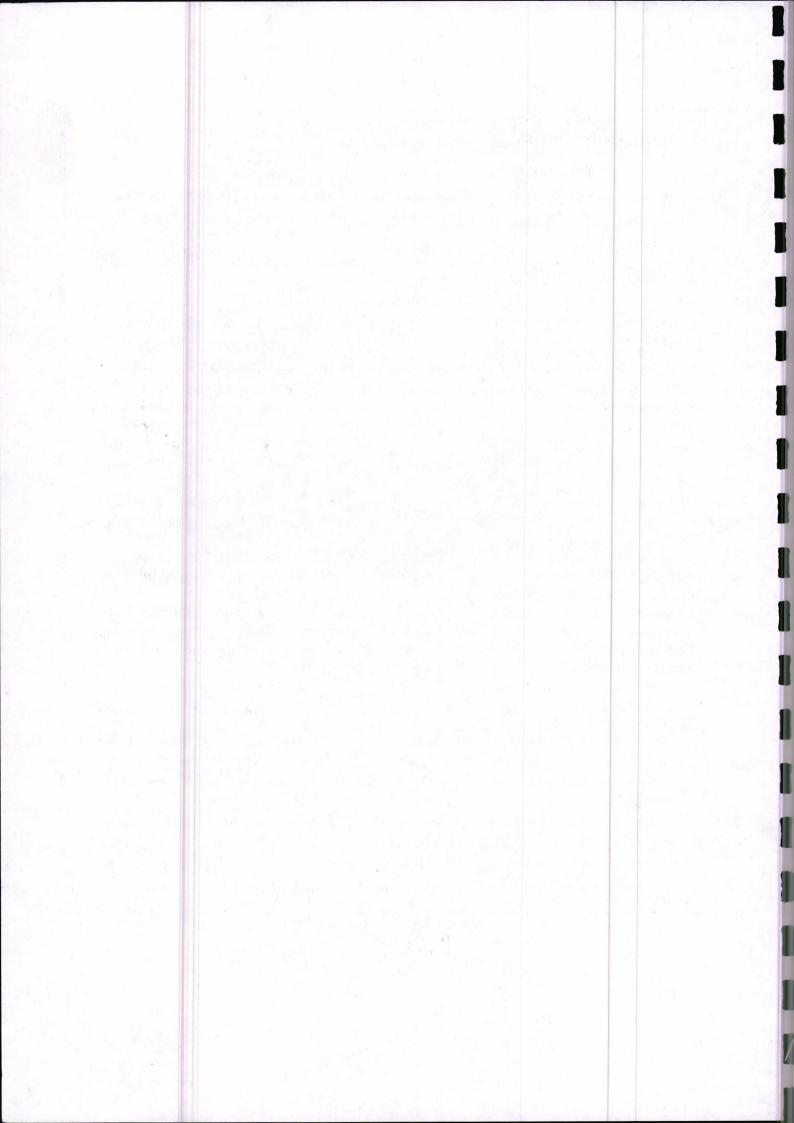
J. purges/14

1. Name of the De	partment: Math	ematics				
2. Course Name	Stochastic	L	Т		P	
	Process &its		1. A. 1.		1.00	
	Applications				· · · ·	
3. Course Code	17070405	4	0		0	
4. Type of Course	(use tick mark)	Core ()	DSE (✓)	AEC ()	SEC ()	OE ()
5. Pre-requisite		6. Frequency	Even (🗸)	Odd ()	Either	Every
<mark>(if any)</mark>		(use tick marks)			Sem ()	Sem ()
7. Total Number o	f Lectures, Tuto					
Lectures = 50		Tutorials = 0	Prac	tical = 0		
8. Course Descript	tion:					
This course prepares	students to a rig	orous study of Stochast	tic Processes	. Towards	this goal,	we cove
		phasizing the applicatio				
		examples such as Mark		oison Proce	ess, birth	and deat
process and Applicat	ions of stochastic	processes in queuing &	reliability			
Course Objectiv	/es:				1	1. A. M.
		ts large variety from	introduction	to an int	ermediate	level o
application know						
**	<u> </u>	queues and understand d	lifferent queu	e models.		
		on depth and find avenue		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
. Understand stoc	nastic processes o	on depin and find avenue	s for further	researcn.		
0. Course Outcom	es (COs):					
The students will be	able to:					
	an model stocha	astic processes and ob	tain solution	ns especial	ly in the	field o
engineering						
		ide better solutions.				
		appening using the know			-	
I. Indulge in strong	g research to get s	olutions in all walks of l	ife since eve	rything is p	robabilist	ic.
1. Unit wise detaile						
Jnit-1 Numbe	er of lectures = 10	Title of the unit:	Stochastic]	Process &	Markov (Chains
Stochastic Processes	: definition, class	ification and examples.	Markov Ch	ains: defini	tion and	examples
Fransition probability	y matrix (P), order	r of a Markov chain, clas	ssification of	states, Stat	tionary dis	tribution
Unit - 2 Numbe	er of lectures = 10	Title of the unit:	Markov Pr	ocess		
					1 1 1	
Simple death-process		lates, properties and reat process.	elated distrit	outions, Si	mple birt	n-process
Unit - 3 Numbe	r of lectures = 15	5 Title of the unit:	Stochastic I	Processes i	n Oueuin	g
Quening models bi	rth and death n	rocesses in queuing th				<u> </u>
Markovian queuing r		rocesses in queung u	icory, wark	ovian quet	ing mou	
Unit - 4 Numbe	er of lectures = 15	Title of the unit:	Stochastic I	Processes i	n Reliabil	ity
Reliability, systems	with components	in series, systems with	n parallel con	nponents,	k-out-of-n	systems
Non-series parallel s	systems, systems	with mixed mode failu				
system, k-out-of-n sta	andby system.			0		
		1 /		1.11	9	
	$\cdot \cap$	Six	Nº.	A.		
	de	>~				

B

12. Brief Description of self learning / E-learning component

http://nptel.ac.in/courses/111102014/


https://onlinecourses.nptel.ac.in/noc18_ma06/preview

https://www.youtube.com/watch?v=KUDhXlnr-gU

https://www.youtube.com/watch?v=FWe5uk5NA5I

- 1. J. Medhi, Stochastic Processes, New Age International Publishers, 2009
- Bailey, Norman T. (1965): The Elements of Stochastic Processes, John Wiley & Sons, Inc., New York.
- 3. E. Balagurusami, Reliability Engineering, Tata McGraw Hill, New Delhi, 1984.
- 4. L. S. Srinath, Reliability Engineering, Affiliated East West Press, New Delhi, 1991.

Rundlens

2.	Course Name Artificial		L	Т		P		
		Intelligence with deep learning			· · · ·			
3.	Course Code	17070406	4	()		0	
<mark>4.</mark>	Type of Course mark)	e (use tick	Core ()	DSE (✓)	AEC ()	SEC ()	OE ()	
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even (✓)	Odd ()	Either Sem ()	Every Sem ()	

7. Total Number of Lectures, Tutorials, PracticalLectures = 50Tutorials = 0

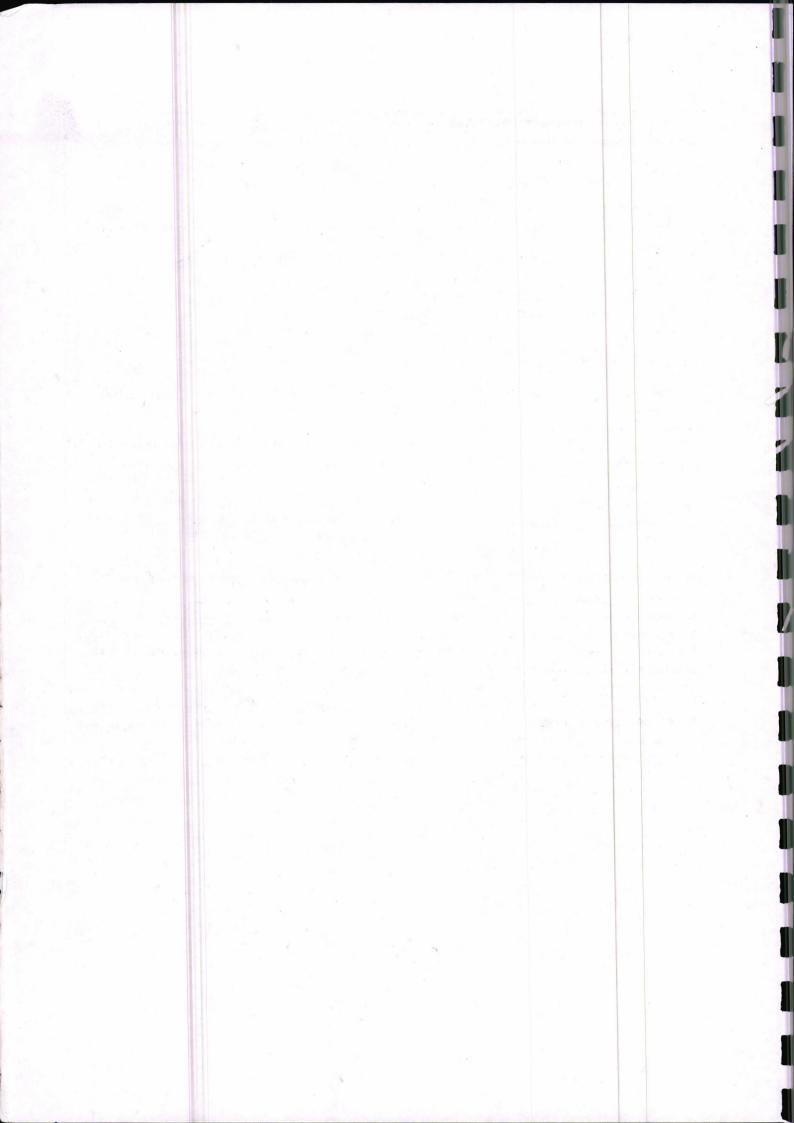
Lectures = 50 8. Course Description:

Machine learning is an all-encompassing discipline that tries to build cognitive capabilities through hardware-software system. Artificial intelligence is a subset of machine learning that deal with network computing that is inspired by how human brain works and tries to build a model of the things we want to predict on or find patterns in. At the heart of it, it is about analysis of data with statistical modelling with numerical and analytical reasonings, optimization based on calculus and linear algebra and non-linear processing and finding efficient deployment on suitable hardware.

Practical=0

This course would start with an introduction to Python programming, linear algebra, calculus and optimization theory, statistical theory and mathematical model, with hands-on practical works in the lab.

Then the course would discuss the theory of artificial neural network and its architectures multi-layer perceptron, convolution neural network. Applications in image processing, natural language processing and data analytics in general would be emphasized.


Currently available frameworks in the field like Keras, Tensforflow, etc would be discussed. This course has both theory and development of computer programs that apply the theory. Formative assessment would focus on home assignments and lab based classes so that there is emphasis on development of applications.

9. Course Objectives:

The world is moving in the direction of smart software and machine and use of AI is widespread. The course would build the foundation of AI by way of emphasizing the most successful paradigm of Ai known as deep learning. The students after completing this course should be able to take up useful projects in AI on their own and most advanced students would be able to take up entrepreneurial activity. There would be an advanced version to be offered as a separate course in subsequent semester and that would focus on more advanced modeling and hands-on development and would be a mixture of project based work and standard lecture.

bo S. S. Rungfally

10. Course Outcomes (COs):

The students after completing this course should be able to take up useful projects in AI on their own and most advanced students would be able to take up entrepreneurial activity. The students would be familiar with latest frameworks and approaches used for development of AI and would be better prepared for industry and research positions

11. Unit wise detailed content					
Unit-1	Number of lectures = 15	Title of the unit: Introduction of Python Programming			
		and Numerical Computational, Basic Machine			
		learning			

Object-oriented and Procedural Programming with Python Machine Learning Basics - Learning Algorithms Capacity, Overfitting and Underfitti Hyperparameters and ValidationSets Estimators, Bias and Varianc MaximumLikelihoodEstimation Bayesian Statistics Supervised Learning Algorithms Unsupervised Learning AlgorithmStochastic Gradient Descent Building a Machine Learning Algorithm Challenges Motivating Deep Learning Feedforward Network -Backpropagation, Gradient based learning, hidden unit Regularization for Deep Learning context and techniques First and Second Order Optimization Techniques Regularization Techniques

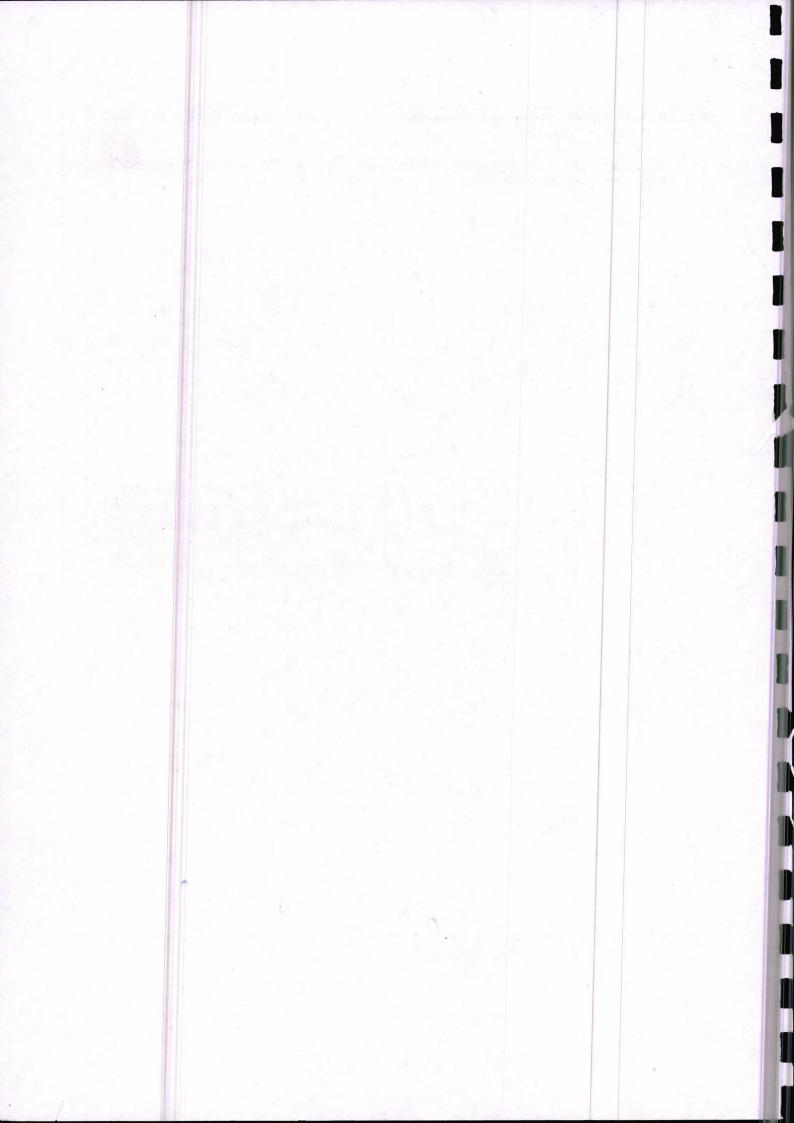
Unit – 2	Number of lectures = 10	Title of the unit: Convolutional Neural Network and
		application in image processing

The Convolution Operation Motivation Pooling Convolution and Pooling as an Infinitely Strong Prior Variants of the Basic Convolution Function Structured Outputs Data Types Efficient Convolution Algorithms Random or Unsupervised FeaturesThe Neuroscientific Basis for Convolutional Networks Convolutional Networks and the History of Deep Learning Application in Computer Vision (Image Processing)

Unit – 3 Number of lectures = 15 Title of the unit: Recurrent and Recursive Nets

Unfolding Computational Graph, Recurrent Neural Networks (RNNs), Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, The Challenge of Long-Term Dependencies, Leaky Units and Other Strategies for Multiple Time Scales, The Long Short-Term Memory and Other Gated RNNs, Optimization for Long-Term Dependencies, Explicit Memory

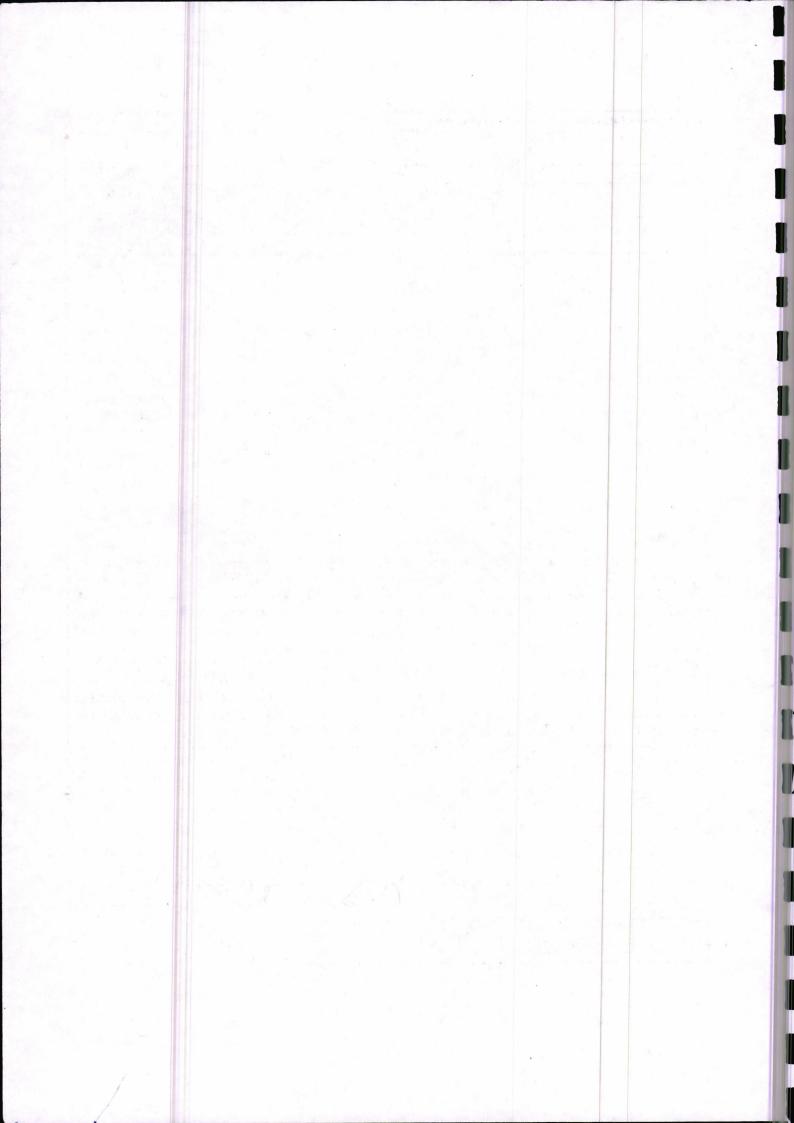
Unit – 4 Number of lectures = 10 Title of the unit: Application


Natural Language Processing Speech RecognitionComputer VisionTransfer Learning Technique and Application

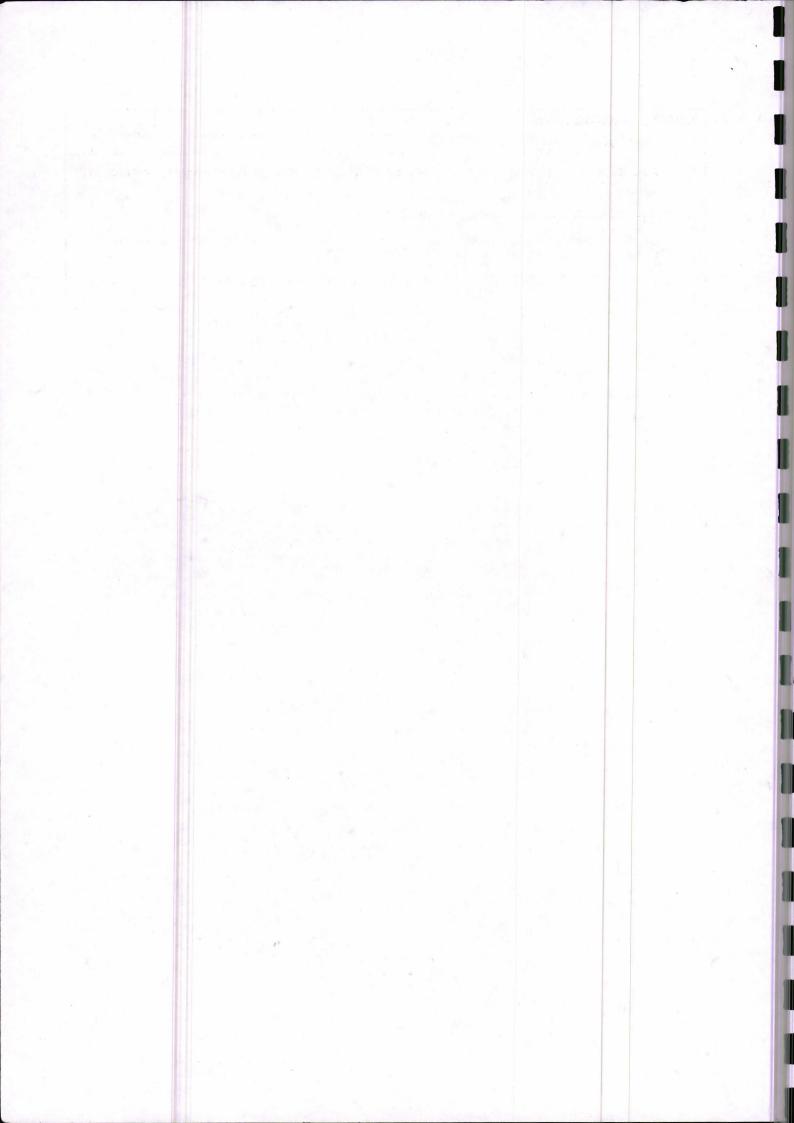
12. Brief Description of self-learning / E-learning component

 Many modules may be studied on youtube — some good ones are by Dr Hugo Larochelle. Coursera is another good source.

w S. S.


13. Books Recommended

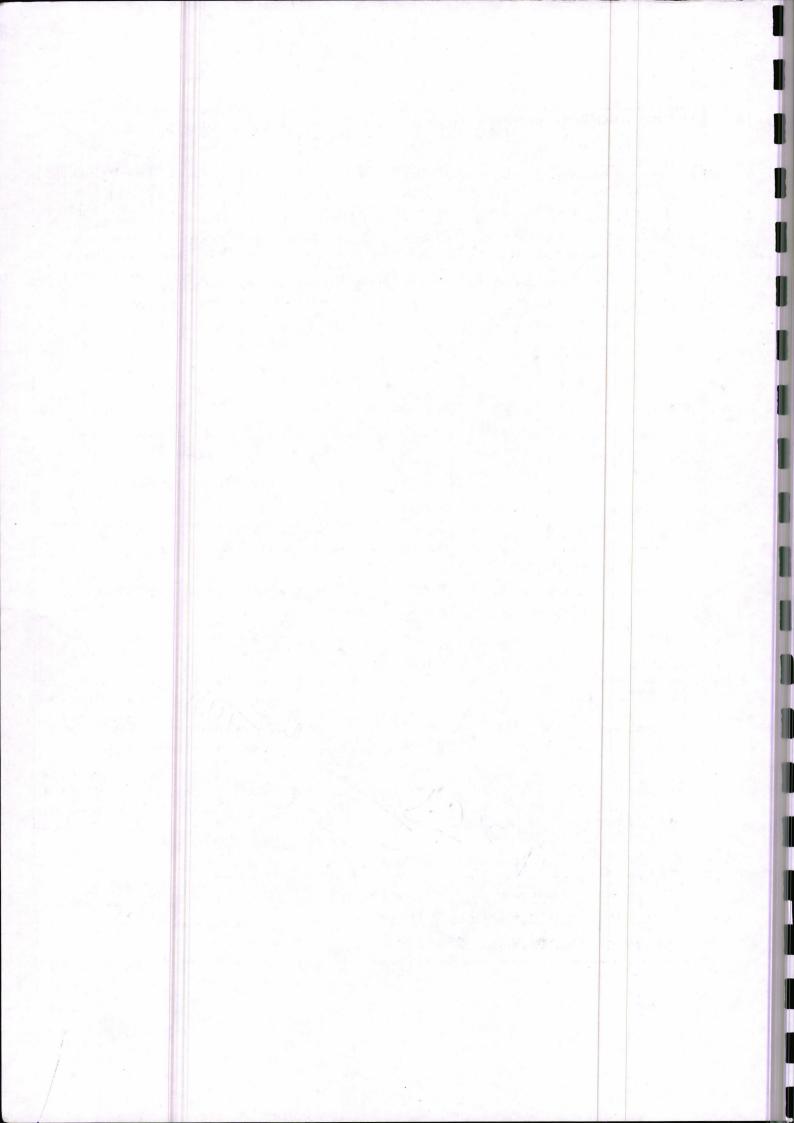
1. Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville, Publisher: MIT Press (3 January 2017), ISBN-10: 0262035618


 Deep Learning with Keras, Implement Neural Network with Keras on Theano and Tensorflow, Antonio Gulli Sujit Pal, Packt Publishing

the C. So non stand

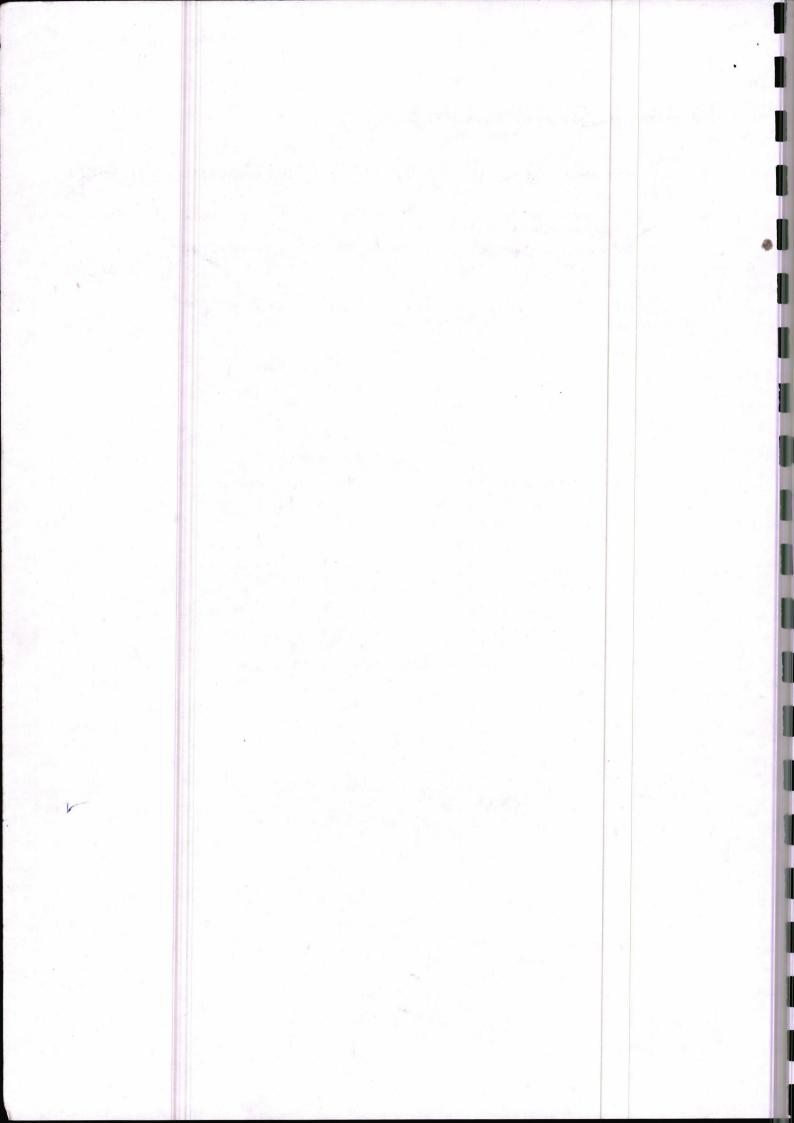
1. Name of the Depa	artment: Mathe	ematics			1	
2. Course Name	Graph	L	7			P
	Theory				a series of a	1.
B. Course Code	17070407	4	C			0
. Type of Course (Core ()	DSE (√)	AEC (✓)	SEC ()	OE ()
. Pre-requisite		6. Frequency	Even (✓)	Odd ()	Either Sem ()	Every
(if any)	The second secon	(use tick marks)			Sem ()	Sem (
. Total Number of	Lectures, Tuto				Sector Cold	
Lectures = 50		Tutorials = 0	Prac	ctical = 0		
Course Description	on:			ing the second		
lso covers the concep	ts of Trees, spar	Graph theory: meaning ming tree, Circuits and I			graphs. Tl	nis cour
Course Objective	s:			and the state		1111
	iian graphs, dire	ent the basic concepts of cted Graphs, Tress, Circ				
. Students in this co	ourse will be abl	e to understand the mean	ning and type	es of Gran		
		e to work with Trees.	ing and type	s or orapi		
		nstrate ability to work w			coloring of	Graphs
Students in this co	ourse will demon	nstrate ability to work wi	ith Directed	graphs.		
1. Unit wise detaile	d content				1997 (1997) 1997 (1997)	12112
	er of lectures =	15 Title of the unit:	Introductio	n to Gran	hs	
	ravelling salesm	ls, paths, cycles, connec an problem, vertex and ces of graphs.				
Unit – 2 Numb	er of lectures =	15 Title of the unit:	Trees and	Fundamen	tal Circui	ts
rees, spanning trees,	weighted graph	finition and properties on the second	tree, Kruska	l Algorith	n, Prim A	
Jnit – 3 Numb	er of lectures =	10 Title of the unit:	Planar Gra	phs and C	raph colo	ring:
		lanar graphs, Kuratows	ki's graphs.	detection	of planarit	y, Euler
		and combinatorial dua				
		mial, chromatic partition				
		10 Title of the unit:			1. A.	Sec. Sec.
Directed Graphs: Typ Euler digraphs.	es of digraphs,	digraphs and binary re	lations, dire	cted paths	and conne	ectednes
2. Brief Description	of self learning	y / E-learning component	n <mark>t</mark>		1	
https://youtu.be/RMLI	R2JHHeWo			8 -	2.	191
https://youtu.be/q0woi			N	alx is	$\left c \right $	
	Ju	252	Ju			

.



https://youtu.be/fZqfkJ-cb28

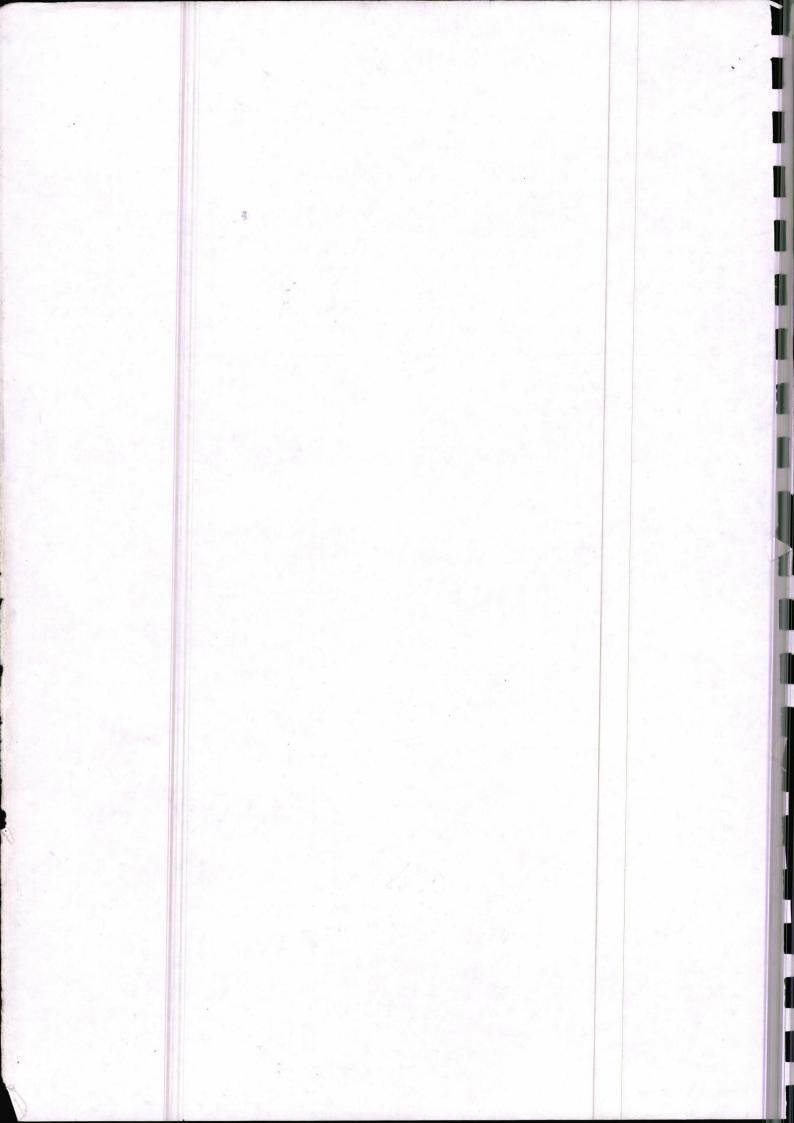
- 13. Books Recommended:
- 1. NarsinghDeo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India Pvt. Ltd, 2004.
- 2. F. Harary: Graph Theory, Addition Wesley, 1969.
- Seymour Lipschutz and Marc Lipson, Theory and Problems of Discrete Mathematics, Schaum Outline Series, McGraw-Hill Book Co, New York, 2007.
- John A. Dossey, Otto, Spence and Vanden K. Eynden, Discrete Mathematics, Pearson, Fifth Edition, 2005.


Nor Sterry

W. C.Sr Si

2. Course Name	Cryptography	L	Т		Р	
3. Course Code	17070408	4		0)
4. Type of Course	e (use tick mark)	Core ()	DSE (✓)	AEC ()	SEC ()	OE (
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even (✓)	Odd ()	Either Sem ()	Every Sem
	of Lectures, Tutoria					
Lectures = 50	· · · · · · · · · · · · · · · · · · ·	Tutorials = 0	Pract	tical = 0		
8. Course Descrip	A NUMBER OF THE OWNER	forming it (encrypting it)	• .	1.1.1. 0		1911
called cipher text. O	only those who posses	s a secret key can deciphe essages, credit card inform	r (or decrypt) the messag	ge into plain	n text.
9. Course Objecti	ives:					
The objectives of th	is course are to:					
	e fundamentals of Cry	ntogranhy				
			and dank' 1'			
		orithms used to provide co		, integrity a	nd authenti	city.
3. To understand the	e various key distribut	tion and management sche	emes.			
4. To understand ho	w to deploy encryptio	on techniques to secure dat	ta in transit a	cross data n	etworks	
5. To design security	y applications in the fi	ield of Information techno	ology			
10. Course Outcon	nes (COs):					
At the end of the co	urse students should b	be able to:				
1: Analyze the vulne	erabilities in any com	puting system and hence b	e able to des	ign a securi	ty solution.	
	ity issues in the netwo				.,	
		gorous approaches, includ	ing theoretic	-1		
				aı		
4: Compare and Co	ntrast different IEEE	standards and electronic n	nail security	19		
11. Unit wise detail						
	$\frac{1}{1} = \frac{1}{1}$	Secure Communic				
		Affine ciphers, Vigene				
sequences.	, One-time pads, Se	cure random bit generat	tor, Linear f	eedback sh	ift register	
	per of lectures = 12	Differential crypta	nalvsis and	its annlicat	ion	
		DES, Attack on DES, Ad	lvanced enc	ryption star	ndard.	
	per of lectures = 10	RSA and its applic		<u></u>	1.1	
Unit - 3 Numb	SA Diffie-Hellman	n key exchange, ElGama	al public ke	y cryptosys	stem,	
RSA, Attacks on F						
RSA, Attacks on F cryptographic hash	n function.					
RSA, Attacks on F cryptographic hash Unit - 4 Numb	n function. Der of lectures = 10	RSA signatures and				
RSA, Attacks on F cryptographic hash Unit - 4 Numb RSA signatures, E	1 function. Der of lectures = 10 lGamal signature, H	lashing and signing, Dig			<mark>n</mark> .	
RSA, Attacks on F cryptographic hash Unit - 4 Numb RSA signatures, E	1 function. Der of lectures = 10 lGamal signature, H				<mark>n</mark> .	
RSA, Attacks on F cryptographic hash Unit - 4 Numb RSA signatures, E 12. Brief Description	1 function. Der of lectures = 10 lGamal signature, H	lashing and signing, Dig E-learning component			<mark>n</mark> .	

•


https://www.youtube.com/watch?v=1pIMO7ChXMU

13. Books Recommended

- 1. Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second E/d, John Wiley & Sons, 1996.
- 2. William Stallings, Cryptography and Network Security: Principles and Practice, Second Edition, Prentice Hall, 1998.
- 3. Neal Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag.
- 4. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone: Handbook of Applied Cryptography, CRC Press.
- 5. Johannes A. Buchmann, Introduction to Cryptography, Springer 2000.
- 6. Douglas Robert Stinson, Cryptography Theory and Practice, Chapman Hall / CRC 2006.

New FILIN

VSX &

